International Journal of Innovative Research in                 Electrical, Electronics, Instrumentation and Control Engineering

A monthly Peer-reviewed / Refereed journal

ISSN Online 2321-2004
ISSN Print 2321-5526

Since 2013

Abstract: With the vast amount of data available today, organizations are looking for more accurate ways of using this data for improving productivity and user experience. Recommender system is one such technology that pro-actively suggests items of interest to users based on their objective behavior on their explicitly stated preferences. Recommendation Engine is one of the most important parts of all commercial and social websites. Whenever a user searches for a book, music, movies or any other product, recommender systems play a huge role in suggesting items that are similar. Recommendations in general are of two types, content based and user based. This paper surveys Recommendation Engines using Collaborative filtering techniques.

Keywords: Recommendation Engines, Collaborative Filtering, Content-Based Filtering, Matrix Factorization


PDF | DOI: 10.17148/IJIREEICE.2019.7309

Open chat