

DOI: 10.17148/IJIREEICE.2025.131129

Intelligent Switching System for Seamless Solar Inverter Transition Between Grid-Tied and Off-Grid Modes

Rajeswari Ramachandran¹, Sureshkumar Raghavan²

Professor, Department of Electrical and Electronics Engineering, Government College of Technology, Coimbatore, India¹

PG Student, Department of Electrical and Electronics Engineering, Government College of Technology, Coimbatore, India²

Abstract: In conventional grid-tied solar power systems, a major limitation is their inability to supply power during grid outages, despite the availability of solar energy. This is due to the inverter's dependency on a live grid signal to operate safely and prevent back-feeding. As a result, during blackouts, available solar power remains untapped, compromising the reliability of the system particularly for critical applications. To overcome this challenge, a "Modification System" was developed and tested using SimuRelay software. This enhanced system introduces an Intelligent Switching Mechanism capable of real-time monitoring and dynamic load management. During a grid outage, the system instantly detects the failure, isolates non-critical loads, and ensures uninterrupted power supply to critical loads by maintaining inverter operation independent of the grid. Simulation results validated this functionality, showcasing seamless transitions and sustained power delivery using solar energy. In normal grid conditions (On-Grid Mode), the system optimizes energy use by prioritizing utility power while placing solar and backup systems on standby. This intelligent control ensures energy efficiency, cost-effectiveness, and reduced strain on backup sources. Safety remains a core feature, with integrated protections such as MCCBs (Molded Case Circuit Breakers) for grid and critical circuits, and secure relay-based switching. These protections were effectively validated during simulation, confirming the systems robustness against faults and unsafe conditions. In conclusion, the Modification System significantly enhances the resilience, efficiency, and safety of solar installations. Through SimuRelay simulation, it has demonstrated its ability to ensure continuous power for essential loads, maximize solar utilization, and provide reliable performance in both on-grid and off-grid scenarios, making it a practical solution for modern energy needs.

Keywords: Intelligent Switching Mechanism, Critical Load Management and Seamless Grid-to-Backup Transition.

I. INTRODUCTION

In the modern era of rapid technological advancement, there is a growing reliance on continuous and stable electrical power to support a wide range of applications in residential, commercial, and industrial environments. From household appliances and healthcare equipment to data centers and automated manufacturing systems, uninterrupted power supply is critical to ensuring operational efficiency, safety, and user convenience. This rising demand places significant pressure on conventional power infrastructures, which are often prone to faults, outages, and inconsistencies. Among various renewable energy options, solar energy has emerged as a leading alternative due to its sustainability, low environmental impact, and declining installation costs. Solar photovoltaic (PV) systems, especially when integrated with inverters, are increasingly being deployed to supplement or even replace grid electricity. These systems are commonly configured in grid-tied or off-grid modes. In a grid-tied system, the inverter synchronizes with the utility grid to feed excess solar energy back to the grid and draw power when solar generation is insufficient. In contrast, an off grid system operates independently, often relying on battery storage to supply energy during periods of low solar output or grid failure.

However, one of the major technical challenges in hybrid or dual-mode solar systems is achieving a seamless transition between grid-connected and off-grid modes during grid outages. Conventional systems often depend on manual switching or basic automatic transfer switches (ATS), which can introduce delays, voltage dips, or momentary blackouts during the changeover. Such interruptions can be detrimental, particularly for critical loads like medical devices, server rooms, or industrial automation equipment that require consistent power quality and availability.

DOI: 10.17148/IJIREEICE.2025.131129

To overcome this limitation, this project focuses on the design and development of an **Intelligent Switching System** (**ISS**). The proposed system is capable of:

- > Automatically monitoring grid status in real-time,
- > Controlling relays and circuit breakers to isolate or connect the grid,
- **Prioritizing critical loads** to ensure they are powered during outages,
- **Ensuring protective functions** against over voltage, under voltage, overcurrent, and under current conditions.

The system is integrated with a solar inverter to intelligently manage the transition between grid-tied and off-grid operations without causing power disruption. It offers the benefits of enhanced system autonomy, operational safety, and user convenience, while reducing the need for manual intervention. Additionally, with low maintenance requirements and a one-time setup cost, the Intelligent Switching System presents a practical solution for improving power reliability in smart homes, rural electrification, and commercial solar installations.

II. LITERATURE REVIEW

Several studies have explored grid-tied and off-grid operational modes of solar photovoltaic (PV) systems, emphasizing reconfigurability, control strategies, and hybrid integration for enhanced performance. Venkatramanan et al. (2020) proposed a reconfigurable solar PV grid-tied inverter architecture designed to enhance energy access, especially during grid outages [1]. Their work demonstrated battery emulation, allowing the PV system to parallelly operate with a UPS battery, thereby ensuring continued backup power through a 4 kVA experimental setup. Complementing this, Dwari et al. (2014) addressed the need for seamless transitions between modes under fluctuating grid and load conditions, highlighting the role of a fast local controller and adaptive MPPT [2] to maintain power balance and system protection.

Further contributions come from the development of hybrid inverter systems. APEC 2012 presented an 80 kW hybrid inverter capable of switching between standalone and grid-connected modes while ensuring uninterrupted power to [3] critical loads. The study focused on control strategies for dynamic power flow management and demonstrated both simulation and hardware implementations. Meanwhile, the IEEE Transactions on Energy Conversion (2011) investigated methods for minimizing PV power output fluctuations [4]. This study employed optimization techniques (linear programming, dump load control, and battery dispatch) to enhance grid stability and maximize economic return, highlighting the importance of predictive control and storage strategies in large-scale grid-connected PV systems. Collectively, these studies establish a foundational understanding of grid-tied, off-grid, and hybrid inverter architectures, along with control and integration methods essential for reliable and flexible renewable energy systems.

III. ANALYSIS AND DISCUSSION

An Intelligent Switching System is a modern, automated system designed to manage the switching of electrical power, data, or communication signals based on real-time analysis and decision-making. Unlike traditional manual or fixed switching methods, intelligent systems use sensors, control logic, and sometimes AI to respond dynamically to changes in demand, faults, or system conditions. These systems are widely used in smart grids, telecommunications, computer networks, and automated buildings to improve efficiency, reliability, and performance. Their ability to adapt to varying inputs makes them essential in today's fast-evolving technological environments.

A. The Role and Types of Switching Systems In Power Systems

A switching system is absolutely essential in solar power installations to effectively manage the flow of electricity between the solar panels, batteries, inverters, and the utility grid. By dynamically switching power sources based on both demand and availability, this system ensures a steady and reliable electricity supply while promoting efficient energy use. For example, the system is designed to prioritize solar energy during the day, seamlessly switching to grid power or battery storage when the solar output drops. This critical process is often enhanced by intelligent switching systems that employ sensors and control logic to monitor generation and consumption in real-time, significantly boosting system reliability, energy efficiency, and equipment longevity. These systems come in several forms: a Manual Switching System is human-operated, simple, and low-cost, mainly used for small setups or backup; an Automatic Switching System uses solid-state electronic devices like thyristors or IGBTs for high-speed, contactless operation, ideal for sensitive loads; a Hybrid Switching System combines mechanical and electronic controls to balance speed and robustness; and finally, the Intelligent Switching System uses microcontrollers and logic algorithms to provide adaptive and smart control over the power flow.

B. On-Grid and Off-Grid Methods

An On-Grid system is directly connected to the main electricity grid. Solar panels generate electricity, which is used to power household loads, and any surplus electricity is fed back into the grid, often earning credits or payments through a

DOI: 10.17148/IJIREEICE.2025.131129

net metering arrangement (reference Fig. III. B). This system doesn't include batteries, so it stops working during power outages unless hybrid solutions are in place. On-grid systems are cost-effective and ideal for urban or suburban areas with reliable utility service.

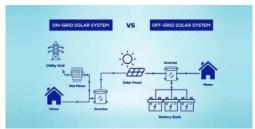


Fig. III. B. on-grid and off-grid methods

An Off-Grid system is completely independent of the utility grid. It typically includes solar panels, a battery bank, a charge controller, and an inverter. These components work together to store solar energy for use when the sun isn't shining (e.g., at night or during cloudy weather). Off-grid systems are suitable for remote areas with no access to the power grid, but they are more expensive due to the need for energy storage and system sizing.

C. Intelligent Switching System

The Intelligent Switching System is a hybrid setup designed for efficiency and resilience, utilizing Solar Panels as the energy source. The power is managed by an MPPT/GROWATT Solar Inverter and distributed via a Solar ACDB. Depending on the configuration, a Battery Bank or UPS Backup may provide auxiliary power. Central to the system is the Intelligent Controller / Auto Transfer Switch (ATS), which handles load prioritization and power source switching. Power is supplied to the LT Power Panel (Load Distribution), and the system interacts with the Utility Grid for synchronization and energy export.

i.) Operation of in switching system:

Normal System Operation: Grid available (ON Grid Mode)

Under standard working conditions when the Electricity Board (EB) Grid is available, the system operates in synchronization with the grid. The Solar Power Rooftop captures solar energy, which is then converted from DC to AC by the GROWATT Solar Inverter. The resulting AC power is managed and protected by the Solar ACDB Panel. Both the solar power and the utility grid power feed into the LT Power Panel, which then supplies the Load (reference Fig. III .C. 1). A key feature of this mode is that the solar energy supports the load, and any excess generation may be fed back into the grid. Crucially, the system is designed to provide no battery backup in this configuration, meaning the load will fail in case of a grid outage.

Normal System Operation: Grid Unavailable (OFF Grid Mode)

This section outlines the state of a standard on-grid system when the Electricity Board (EB) grid is unavailable. The critical flow status is that although solar power is available and is being converted by the inverter, this power cannot reach the load because the Grid signal is lost, causing the on-grid inverter to immediately shut down. Consequently, the ACDB panel, LT power panel, and the load are all disconnected (reference Fig. III .C. 1). The key limitation of this configuration is that since the inverter is designed to depend on the grid signal to stay active, the entire system fails and no power is supplied to the load, despite the availability of solar energy.

Modified System (ON Grid Mode) With Intelligent Switching

The flow of power begins with the Solar Power, which passes through the Inverter and then the ACDB Panel. The AC output is strategically split: one path goes To Grid Protection Breaker before supplying the LT Panel and the General Load, while the other goes To Critical Load Breaker to supply the Dedicated Critical Load (reference Fig. III .C. 2). The system is enhanced by New Components, including the Intelligent Controller, which actively monitors the grid status (ON/OFF). The Grid Protection Breaker controls the connection to the grid based on feedback, and the Critical Load Breaker is dedicated to ensuring power only to essential loads when required. In this standard mode, both normal and critical loads are powered, and solar energy contributes to the system, synchronized with the grid.

Modified System (OFF Grid Mode) — With Intelligent Switching

When the Grid is OFF, the Intelligent Switching component immediately detects the grid outage and acts to isolate the general load by ensuring the Grid Breaker is disconnected. This action also results in the LT Power Panel and general load being disconnected from the power source (reference Fig. III . C. 2). Crucially, the Inverter stays operational because

DOI: 10.17148/IJIREEICE.2025.131129

it receives necessary feedback from the intelligent controller, allowing it to continue generating power (a process often called "islanding"). The power flow is rerouted directly from the Solar>Inverter >ACDB >Critical Load Breaker to the Critical Load. This ensures that the critical systems continue to receive power from the solar source, maintaining essential operations during the blackout.

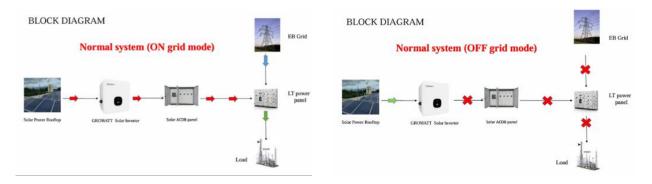


Fig. III. C. 1. Normal System (ON Grid Mode) and (OFF Grid Mode)

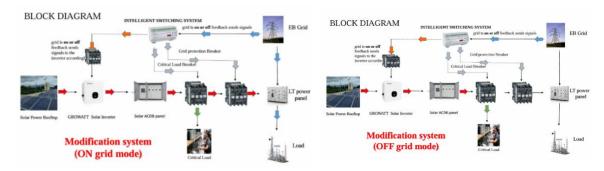


Fig. III. C.2.Modified System (ON Grid Mode) and (OFF Grid Mode)

ii.) Schematic Representation of the Intelligent Switching System

This Intelligent Switching System integrates three primary sections to ensure resilient power supply and efficient load management. The TOP SECTION features an OFF-GRID UPS System, which receives 230V Input Supply, cleans it with an EMI Filter, and converts it to DC via the Rectifier and DC Filter, and then back to stable 230V AC using the Inverter and AC Filter. Power is managed by a pair of Static Switches (one normally ON, one normally OFF) to ensure seamless backup AC power for critical loads during grid failure. The MIDDLE SECTION houses the Control System & Relays, primarily using an SMPS to generate 11V/12V DC for activating the EMR Relay-1 & Relay-2. This Intelligent Relay Logic is critical: when the Grid is ON, the relays default to allow grid/solar power; when the Grid fails, the relays toggle to isolate the general load and connect the UPS (or solar supply) to the critical load via NO/NC contacts. Finally, the BOTTOM SECTION incorporates the Solar Growatt Inverter (converting solar DC to AC) and Load Segregation components. MCBs provide protection, while Contactors & Relays control the flow to the segregated Normal Loads and Critical Loads. The system is further enhanced with embedded protection features, including O/V, U/V, O/T, U/T relays and OLP to ensure safety and system robustness (reference Fig. III .C. ii). The central Switching Logic dictates that upon grid failure, the system isolates the normal load and redirects power to only the Critical Load (e.g., Data Room, COE Lab), preferentially using the Solar Inverter before switching to the UPS.

The schematic circuit diagram designed using EPLAN software represents an Intelligent Switching System that enables seamless power transition between solar, grid, and UPS sources to supply critical and normal loads. The system utilizes electromechanical relays (EMRs), contactors, and protective devices like MCBs and over/under voltage relays to ensure uninterrupted power delivery, safety, and efficiency. This digital version mirrors the hand-drawn layout and allows for more precise design, simulation, and troubleshooting, making it ideal for practical implementation in labs and critical areas.

DOI: 10.17148/IJIREEICE.2025.131129

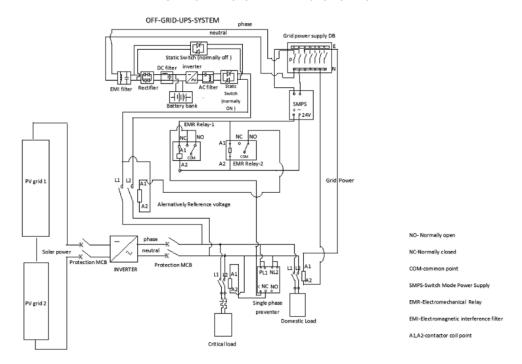


Fig. III.C. ii. Schematic Representation of the intelligent switching system

iii.) Simulation in Simurelay Software of the Intelligent Switching System

The Intelligent Switching System shown in the Simurelay interface demonstrates a real-time simulation of power transfer between solar, off-grid UPS, and grid supply sources. It includes safety mechanisms such as MCCBs, relays, and contactors for protecting critical and normal loads. The system automatically prioritizes solar power and shifts to UPS or grid in case of failure, ensuring uninterrupted power. Indicator lights signal the active load source, helping monitor system status efficiently. This simulation aids in verifying the logic, protection, and switching behavior before physical implementation (reference Fig. III. *C. iii.*).

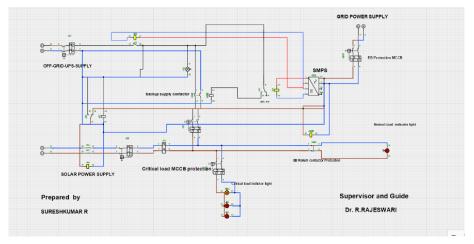


Fig. III. C. iii. Simulation in Simurelay software of the intelligent Switching system

Before simulation, the design and development of the Intelligent Switching System (ISS) involved detailed planning of both hardware and software components. Key parameters such as load prioritization, voltage thresholds, switching logic, and fault detection mechanisms were defined to ensure optimal performance. The circuit was designed to interface seamlessly with a solar inverter, incorporating relays, microcontrollers, and protection units. Flowcharts and control algorithms were developed to guide the system's automated decision-making process. These preparations ensured that the ISS was logically sound, functionally complete, and ready for simulation under various real-world operating conditions.

DOI: 10.17148/IJIREEICE.2025.131129

IV. RESULTS AND DISCUSSION

SimuRelay is a vital simulation tool that enables the design, analysis, and virtual testing of relay logic and electrical control systems using a graphical interface with components like relays, switches, and timers, proving useful for students and engineers to visualize and validate control circuits. For this project, SimuRelay was utilized to simulate the Intelligent Switching System (ISS), allowing the testing of relay-based control logic for automatic switching between grid-tied and off-grid modes, including real-time response, logic validation, and modeling of scenarios like grid failure, overload, and low battery conditions, which helped to identify and correct design flaws early in development.

a. Normal System (On Grid Mode): In the basic system with the grid available, the Grid Power Supply powers the load; the SMPS energizes the contactor (KM1), allowing current flow to the normal load, confirmed by the glowing "Normal Load Indicator Light," while backup sources like UPS and Solar are kept disconnected to conserve energy(reference Fig. IV. a.).

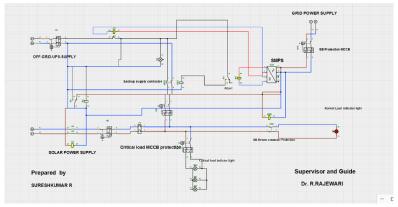


Fig. IV. a. Normal system (ON grid mode)

b. Normal System (Off Grid Mode): This scenario illustrates the core problem of a standard grid-tied system: despite solar power being available, the grid-tied inverter requires an active grid connection to function and operate safely; without it, the inverter enters a safe shutdown mode, rendering the available solar energy unusable and causing the entire system to fail to provide power to the loads (reference Fig. IV. b).

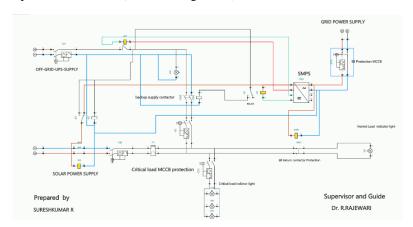


Fig. IV. b. Normal system (OFF grid mode)

c. Modification System (On Grid Mode): In the upgraded On-Grid Mode, the Grid Power Supply remains the primary energy source, routed first through the "EB Protection MCCB" for safety, then feeding the SMPS for control circuits and supplying the loads via the "EB Return contactor Protection," while the Solar Power Supply and Off-Grid-UPS-Supply are present to supplement or remain on standby, with a RELAY managing interaction, protection, and proper distribution of power to both normal and critical loads (reference Fig. IV. c.).

DOI: 10.17148/IJIREEICE.2025.131129

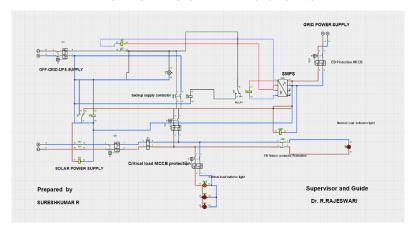


Fig. IV. c. Modification system (on grid mode)

d. Modification System (Off Grid Mode): During a power disruption, the Intelligent Switching mechanism swiftly detects the outage, immediately isolating the general loads to prevent back-feeding and conserve energy, and critically, the inverter remains fully operational (unlike standard grid-tied inverters) by utilizing dedicated feedback from the system's controller, ensuring the critical systems continue to seamlessly receive uninterrupted power directly from the solar supply (reference Fig. Fig. IV. d.).

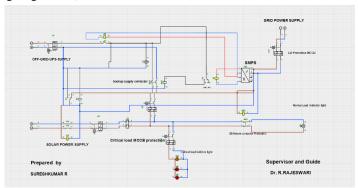


Fig. IV. d. Modification system (off grid mode)

e. Modification System (Safety Protection): Robust safety is ensured through components like the "EB Protection MCCB" at the incoming grid supply to guard against overcurrents and short circuits, a dedicated "Critical load MCCB protection" for essential circuits, and the "EB Return contactor Protection" to manage the grid return path interaction, with various relays and contactors implementing intelligent switching and isolation to prevent faults and ensure secure, continuous power delivery (reference Fig. IV. e.)

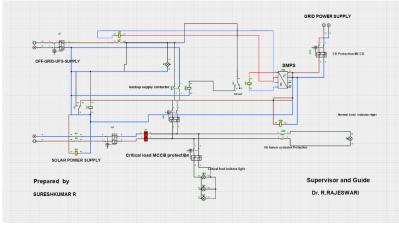


Fig. IV. e. Modification system (safety protection)

DOI: 10.17148/IJIREEICE.2025.131129

The "NORMAL SYSTEM (OFF GRID MODE)" highlights a significant limitation of conventional grid-tied solar installations: the inability to supply power to loads during a grid outage, even when solar power is actively available. This failure occurs because the inverter, by design, requires a grid signal to remain operational and safely prevent back-feeding into a de-energized grid, effectively rendering available solar energy unusable during blackouts.

The "MODIFICATION SYSTEM" was developed precisely to overcome this critical flaw, and through Simurelay simulation and testing, it has demonstrated itself as an intelligent and resilient power management solution: Enhanced Reliability During Grid Outages: The core achievement of the Modification System, as verified through simulation, is its intelligent switching capability. It swiftly detects grid outages and automatically isolates general (non-critical) loads. Crucially, it ensures that critical systems continue to receive uninterrupted power directly from the solar supply, as the inverter remains operational even without a grid signal, facilitated by feedback from its dedicated controller. This transforms a previously unreliable system during outages into a robust one, a functionality successfully tested and proven in the simulation environment.

Optimized On-Grid Operation: In "On-Grid Mode," the system efficiently prioritizes the Grid Power Supply for all loads. Backup sources like UPS and Solar are intelligently disconnected or placed on standby to conserve energy, ensuring cost-effectiveness and reliance on the primary utility grid when available. This optimized behavior was also validated during simulation runs.

Comprehensive Safety Protection: The system integrates robust safety features, including "EB Protection MCCB" for the main grid input and "Critical load MCCB protection" for essential circuits. Additionally, "EB Return contactor Protection" and various internal relays and contactors ensure safe switching, fault isolation, and overall secure power delivery, with their effectiveness confirmed through testing.

In summary, the Simurelay simulation and subsequent testing have definitively proved that the "MODIFICATION SYSTEM" successfully addresses the inherent vulnerability of grid-tied solar systems during power disruptions. It consistently provides a continuous, safe, and intelligently managed power supply for critical loads, maximizing the utilization of solar energy even when the grid is down, while maintaining efficient and protected operation when the grid is active. These results highlight significantly improved energy independence, reliability, and safety for essential services.

V. CONCLUSION AND FUTURE SCOPE

This solar power system is designed with intelligent control, automatic switching, and robust protection mechanisms to ensure safe, efficient, and reliable energy conversion and distribution. By integrating smart monitoring with real-time relay control, the system not only adapts to changing grid conditions but also safeguards critical loads and infrastructure from electrical anomalies. And the real time validation is verified using Simurelay software.

For future implementation, this system can be extended by incorporating load flow analysis to evaluate and optimize energy distribution under various loading scenarios. This would help in enhancing system efficiency, voltage regulation, and overall performance in different operational conditions. Additionally, the proposed architecture can be restructured into a physical hardware model, enabling practical deployment in residential, commercial, or industrial environments. Future hardware development can also integrate battery storage management, internet of things (iot) capabilities, and remote fault diagnostics to further improve reliability, scalability, and control.

The implementation of the Intelligent Switching System (ISS) offers several significant societal benefits. Firstly, it enhances power reliability and safety by enabling a seamless transition between grid-connected and off-grid modes, ensuring uninterrupted power supply for critical applications such as hospitals, data centers, and emergency services. This reduces the risk of operational failures and enhances public safety. Secondly, by supporting the efficient integration of solar photovoltaic systems, the ISS promotes the adoption of sustainable energy sources, thereby reducing dependency on fossil fuels and contributing to environmental conservation efforts. Thirdly, the system holds immense potential in improving the quality of life in underserved or rural areas by providing a stable and autonomous power supply where grid access is limited or unreliable. This can lead to better access to education, healthcare, and economic development opportunities. Lastly, the ISS offers economic efficiency through its automated operation and low maintenance requirements, helping users reduce energy costs, optimize resource utilization, and extend the lifespan of electrical equipment, making it a practical and scalable solution for a wide range of applications.

DOI: 10.17148/IJIREEICE.2025.131129

REFERENCES

- [1]. S D. Venkatramanan, Student Member, IEEE, Vinod John, Senior Member, IEEE, and "A Reconfigurable Solar Photovoltaic Grid-Tied Inverter Architecture for Enhanced Energy Access in Backup Power Applications" Issue: 12 | Journal Article Cited by: Papers (26) IEEE Transactions on Industrial Electronics (Volume: 67, Issue: 12, December 2020)
- [2]. Dwari, L. Arnedo, and V. Blasko, "Advanced techniques for integration of energy storage and photovoltaic generator in renewable energy systems," in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), pp. 395–401, Sep. 2014.80 kW Hybrid Solar Inverter for Standalone and Grid Connected Applications) 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC)
- [3]. Junbiao Han; S. K. Solanki, J. Solanki, "Coordinated Predictive Control of a Wind/Battery Microgrid System," Emerging and Selected Topics in Power Electronics, IEEE Journal of, vol.1, no.4, pp.296-305, Dec. 2013.
- [4]. E. M. Natsheh, A. R Natsheh, A. Albarbar, "Intelligent controller for managing power flow within standalone hybrid power systems," IET Science, Measurement & Technology, vol.7, no.4, pp.191-200, July 2013
- [5]. Y. Riffonneau, S. Bacha, F. Barruel, S. Ploix, "Optimal Power Flow Management for Grid Connected PV Systems with Batteries," IEEE Transactions on Sustainable Energy, vol.2, no.3, pp.309-320, Jul. 2011.
- [6]. M. Singh, V. Khadkikar, A. Chandra, and R. K. Varma, "Grid inter-connection of renewable energy sources at the [1]. distribution level with power-quality improvement features," IEEE Trans. Power Del., vol. 26, no. 1, pp. 307–315, Jan. 2011.
- [7]. S. S. H. Bukhari, T. A. Lipo, and B. Kwon, "An online ups system that eliminates the inrush current phenomenon while feeding multiple load transformers," IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 1149–1156, Mar. 2017.
- [8]. G. Vijayakumar, M. Kummert, S. Klein, and W. Beckman, "Analysis of short-term solar radiation data," Solar Energy, vol. 79, pp. 495–504, 2005.
- [9]. W. A. Omran, M. Kazerani, M. M. A. Salama, "Investigation of Methods for Reduction of Power Fluctuations Generated From Large Grid-Connected Photovoltaic Systems," IEEE Transactions on Energy Conversion, vol.26, no.1, pp.318-327, Mar. 201