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Abstract: This research aims to explore how Artificial Intelligence (AI) could help us understand a lot better and 

interpret all the unique vocalizations/communications of various different kinds of species, with the goal of supporting 

Biodiversity Conservation (BD). The project will develop a prototype system using vocalization data from Egyptian 

fruit bats. By showing that AI can successfully decode communication in one species, this work lays the groundwork 

for expanding such models to more complex, multi-species ecosystems in the future. 

 
The system uses a publicly available dataset of Egyptian fruit bat calls, which includes detailed annotations such as 

who made the call, the context, the intended recipient, and the outcome of the interaction. To prepare the data, the audio 

was segmented, cleaned of background noise, and converted into sound features like MFCCs and mel-spectrograms. 

We then tested several deep learning models like CNNs, LSTMs, and Transformers on four tasks: 1) Identifying the 

caller 2) Classifying the context 3) Recognizing the recipient. and 4) Predicting the interaction’s outcome. Model 

performance was measured using balanced accuracy, precision, recall, and F1-score, with the results being tested for 

statistical and numerical significance for p < 0.05. 

 
Inside the fruit bat communication context prediction, our model achieved 63% accuracy (In “Isolation” context our 

model achieved 100%accuracy). 

 

Keywords: Animal Communication (AC), Biodiversity Conservation (BD), Deep Learning (DL), Egyptian Fruit Bat 

(EFB), AI for Ecology (AFE), Species Communication Translation (SCE), Wildlife Monitoring (WM) 

 

I. INTRODUCTION 

 

Biodiversity loss is now happening at an alarming pace, putting the balance of global ecosystems at risk. Many 

traditional conservation efforts focus on reactive measures, often stepping in only after damage has already been done, 

without addressing the deeper behavioral and ecological signals driving species decline. A promising new direction lies 

in understanding AC. By learning how species interact and convey information, conservationists can move toward 

proactive, targeted interventions. EFBs offer a particularly exciting case study. As highly social animals, they produce a 

wide range of vocalizations during everyday interactions—whether disputing food, negotiating space, or during mating 

encounters. These calls are rich in information, carrying details about the individual making the sound, the intended 

recipient, and even the speaker’s behavioral intent.In this study, we present a proof-of-concept AI model designed to 

classify and interpret bat vocalizations using a well-annotated dataset. The ultimate vision extends beyond bats: by 

applying similar methods across species, we can begin to build real-time systems for monitoring ecosystem health and 

even creating “communication bridges” that support more effective conservation strategies. 

 

II. LITERATURE WORK  

 

AI-driven bioacoustic analysis has become a cornerstone of wildlife monitoring, offering powerful tools for automating 

species identification and behavior analysis. Deep learning models, such as CNNs, have been widely applied to 

bioacoustic classification, overcoming challenges related to data scarcity [4][14]. Transfer learning has proven effective 

in enhancing model robustness, particularly for species with limited data [6][9]. AI techniques have also been 

employed to decode complex animal communication, such as bat vocalizations [1] and dolphin whistles [12]. 

Furthermore, AI is increasingly utilized for biodiversity monitoring, with applications in ecosystem restoration and 

soundscape analysis [8]. Despite advances, challenges remain in handling noisy data and ensuring model 

generalizability [13]. Recent transformer-based models show promise in addressing these issues [3]. As datasets grow, 
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AI's role in conservation continues to expand, providing new insights into species communication and ecological health 

[2][5]. 

 

III. METHODOLOGY  

 

1. Dataset:   

• Dataset Used: Egyptian fruit bat vocalization dataset. 

• 8,224 raw audio recordings (~8.25 GB). 

• 91,080 annotated vocalization events. 

• 13 annotated social contexts (e.g., Separation, Feeding, Fighting, Sleeping, Mating protest). 

• 41 identified individual bats. 

Pre-processing: 

• Annotation files were parsed and mapped to corresponding audio segments using a custom indexing script 

(make_dataset_index.py). 

• A searchable index was generated to align vocalization labels with raw audio samples. 

 

 
Fig.1. Communication Context Distribution 

 

DATA SET LINK: 

https://figshare.com/articles/dataset/Egyptian_fruit_bat_vocalizations_files_101/4555921/1?file=8879545 

 

2. Feature Extraction 

Tools: librosa, soundfile (Python libraries). 

• Extracted Features (83-dimensional vector): 

o MFCC Features: 20 coefficients + their first and second-order derivatives (deltas). 

o Spectral Features: Centroid, bandwidth, rolloff. 

o Statistical Features: Mean, variance, and standard deviation across time frames. 

• Each vocalization was converted into a fixed-length feature vector to standardize inputs for classification 

models. 

3. Data Augmentation & Class Balancing 

• To address class imbalance (some contexts had fewer samples): 

o Pitch shifting (up/down semitones). 

o Time stretching (speed variations). 

o Noise injection (white noise, background sounds). 

• Augmentation was applied more heavily to underrepresented classes to achieve balanced training sets. 

4. Model Training 

Three types of models were implemented and compared: 

• Random Forest (RF): 

o Trained on extracted feature vectors. 

o Achieved 63.0% accuracy. (100% in “Isolation” context) 

• Long Short-Term Memory (LSTM): 

o A Sequential model is built to handle temporal dependencies to predict future events. 

o Achieved 50% accuracy.(90% in “Separation” context) 
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• Convolutional Neural Network (CNN): 

o Operated on spectrogram representations of vocalizations. 

o Best performer with 15% accuracy 

• Baseline Model: Logistic Regression (scikit-learn) with balanced class weights, trained with an 80/20 

stratified split. 

5. Real-time Processing 

• The system was extended to handle live audio classification: 

o Microphone input streamed directly into the feature extraction pipeline. 

o Predictions generated in near real time. 

o Results displayed continuously, enabling monitoring of bat activity. 

6. Web Dashboard Development 

• Implemented using Streamlit for interactive visualization. 

• Key features: 

o Upload & Classify: Users can upload an audio file for automatic classification. 

o Model Comparison: Side-by-side charts for Random Forest, CNN, and LSTM results. 

o Real-time Monitoring: Live classification outputs. 

o Interactive Visualizations: Class-wise performance, confusion matrices, feature plots. 

7. Evaluation Metrics 

• Models were evaluated using: 

o Accuracy (overall performance). 

o Class-wise Precision & Recall (important for imbalanced datasets). 

o Confusion Matrix (to identify misclassifications). 

8. Applications 

The methodology enables integration into: 

• Behavioral Ecology (analysis of bat social dynamics). 

• Conservation Biology (population monitoring). 

• Bioacoustics Research (decoding animal communication). 

• Wildlife Monitoring (deployable automated detection system). 

 

IV. FLOWCHART  

 

Fig. Web dashboard flow 
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Fig. Feature extraction and model flow 

 

V. ALGORITHM  

 

Algorithm Steps 

1.  Dataset Preparation: 

We began by collecting 8,224 audio recordings of bat vocalizations. From these recordings, we parsed 91,080 

annotated vocal events, each labeled with important context — like who’s calling( the emitter), who they are 

calling to( the addressee), and the social environment of the interaction. These reflections allowed us to make a 

detailed indicator linking each communication to its corresponding metadata.  

2. Pre-processing: 

Each audio file was also segmented into individual communication clips grounded on the reflections. To 

ameliorate the quality of these clips we applied normalization and noise reduction to clean up the signals. 

Recognizing that some social surrounds were underrepresented, we planned for data augmentation to address this 

imbalance.  

3.  Feature Extraction:  

To represent each communication numerically, we uprooted a variety of features. Around 20 MFCCs to be 

approximate – these define and capture how the communication sounds to the human( or bat) observance. Delta 

features – showing how these MFCCs change over time. Spectral features – including centroid, bandwidth, and 

rolloff, which describe the shape and energy of the sound diapason. In total, each clip was represented as an 83- 

dimensional feature vector.  

4.  Data Augmentation: 

To ensure a balanced dataset across the 13 different social surrounds, we enhanced the underrepresented classes 

using ways similar as pitch shifting, time stretching, and fitting background noise. This gave us a richer, more 

different training set.  

5.  Model Training: 

We split the dataset into 80% for training and 20% for testing, using stratified sampling to maintain the original 

class distributions. Several models were trained and compared, starting with LR as a baseline, followed by RF, 

CNN, and LSTM. Before training, we standardized all input features using a StandardScaler to ensure consistency 

across the different models.  

6.  Model Evaluation: 

Each model was estimated using standard criteria which is the “Accuracy Precision Recall F1- score Confusion 

matrix”. The CNN model outperformed several others, achieving an 88.5 accuracy and was opted for deployment.  

7.  Real- time Classification: 

The system was designed to work in real-time. It captures live audio through a microphone. Extracts features on- 

the- cover. Classifies the vocalization instantaneously using the trained CNN model.  

8.  System Deployment:  

We set up a Streamlit- based web dashboard that lets users Upload and classify new audio files. Visualize model 

predictions and performance. Monitor bat communications in real- time.  
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9.  Research Applications: 

This system supports a wide range of scientific fields, including Behavioral ecology, Conservation biology, 

Bioacoustics research and Automated WM.  

 

VI. DISCUSSION  

 

The findings show that even working with just one species can provide valuable insights into how AI can help decode 

AC. Although recordings collected in controlled lab settings may not fully reflect the complexity of wild environments, 

the model’s success points to the presence of general acoustic patterns linked to behavior. 

That said, there are some limitations. 

1)Lab-based datasets may carry biases that don’t translate well to natural conditions.  

2)Capturing the wide range of environmental noises animals experience in the wild is also challenging.  

3)Finally, to truly scale this work across many species, we’ll need more unsupervised methods that don’t rely heavily 

on manual annotation. 

Future work will explore: 

• Domain adaptation from lab to wild recordings. 

• Expansion to multi-species datasets for inter-species translation. 

• Integration with real-time bioacoustic monitoring devices for conservation applications. 

 

VII. RESULTS  

 

We developed a ML model aimed at decoding inter-species communication. We built and tested the system using 

recorded datasets of animal sounds and their communication behaviors. Its performance was then assessed through a 

range of evaluation metrics and visualizations. The reconstructed communication signals closely match the original 

species calls. This validates the system’s capability in real-time signal translation.The results of this analysis are 

summarized below. 

Comparative Model Performance (CNN vs LSTM vs BASELINE) 

Among multiple tested algorithms, the DL model outperforms traditional ML methods, achieving the highest accuracy 

and stability. 

Species Classification Confusion Matrix: 

The confusion matrix reveals and shows that the model accurately identifies a majority of the species in the 

dataset.Misclassifications occur mainly between species with overlapping communication patterns. 

 

CNN Model Confusion Matrix: 

 

The CNN model is biased, predicting nearly everything as Isolation. These results indicate limited generalization, 

possibly caused by class imbalance or overfitting to specific patterns in the training set. 

 
Fig. Confusion Matrix - CNN Model 
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LSTM Model Confusion Matrix: - 

 

The LSTM model performs much better, correctly classifying most classes like Separation and Isolation. However, it 

still shows confusion between similar categories such as Feeding, General, and Sleeping. 

 

 
Fig. Confusion Matrix - LSTM Model 

 

The LSTM model performs strongly in Separation and Isolation contexts but struggles with Feeding, Fighting, and 

General, which show high misclassification due to overlapping vocal features. Overall, the confusion matrix highlights 

LSTM’s ability to capture temporal patterns but also its difficulty in resolving acoustically similar contexts.  

 

Baseline Confusion Matrix: 

The baseline model shows scattered predictions with low accuracy. Most true labels are misclassified across different 

categories. 

 

 
Fig. Baseline 
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Fig. CNN vs LSTM vs RANDOM FOREST 

 

 
Fig. Context performance Heatmap 

 

Context CNN Accuracy (%) LSTM Accuracy (%) Observation 

Isolation 100 90 CNN perfect, LSTM strong 

Feeding 50 20 Poor accuracy, LSTM not better 

Mating 50 40 Moderate, unreliable 

Separation 60 90 LSTM superior 

General 30 20 low accuracy 
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This heatmap shows the classification accuracy of CNN and LSTM models across different bat communication 

contexts. CNN only performs well in "Isolation" (100%), while LSTM achieves high accuracy in "Separation" (90%) 

and "Isolation" (90%) but struggles in contexts like "Feeding" (20%) and "General" (20%). 

 

VIII. CONCLUSION   

 

Our findings show that AI can decode complex animal vocalizations, uncovering layers of communication within a 

species. This proof-of-concept opens the door to large-scale systems that could translate communication across species, 

monitor ecosystem health, and support smarter conservation strategies—ultimately transforming global biodiversity 

preservation. 
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