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Abstract: Medical imaging forms a cornerstone of modern diagnostic healthcare; still manual image interpretation is 

intensive and susceptible to discrepancies among different observers. This work introduces a hybrid deep learning 

methodology that combines Convolutional Neural Networks (CNNs) with classical image processing techniques to 

classify chest X-rays into diseased and normal categories. Using transfer learning with ResNet50 and feature fusion 

involving edge, corner, and texture descriptors, the suggested architectural framework exhibits enhanced efficacy in the 

detection of pneumonia, tuberculosis, and COVID-19. The dataset used is NIH Chest X-ray14 and supplementary datasets 

show enhanced accuracy, recall and area under the curve. Furthermore, explainability tools such as Grad-CAM overlays 

with heat maps provide interpretability and clinical confidence, addressing a major gap in AI-assisted diagnostics. 
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I. INTRODUCTION 

 

Medical imaging constitutes an integral component of con- temporary healthcare, with chest X-rays emerging as one of 

the most widely used diagnostic imaging modalities on a global scale. The analysis of chest X-rays requires significant 

expertise and can be time-consuming, leading to potential delays in diagnosis and treatment. Automated computer aided 

design (CAD) systems have appeared as promising tools to assist radiologists in detecting and classifying various thoracic 

diseases. Recent developments in deep learning, particularly Convolutional Neural Networks (CNNs), have shown 

extraor- dinary success in medical image analysis. However, only deep learning approaches may lack interpretability and 

robustness in clinical settings. Classical computer vision techniques, while more interpretable, often struggle with the 

complexity and variability inherent in medical images.This work pro- poses a hybrid approach that influences the 

strengths of both deep learning and classical computer vision methods. Our architecture combines ResNet50-based 

feature extraction with handcrafted features derived from classical image processing techniques, creating a more robust 

and interpretable system for chest X-ray disease classification. 

 

II. LITERATURE REVIEW 

 

Wang et al., 2017 (ChestX-ray8)[1]. CNN based framework trained on extensive chest X-ray dataset mined from 

radiology reports. Pros include unprecedented scale enabling baseline benchmarking for multi-label thoracic disease 

detection and facilitating localization via class activation. Cons are substan- tial label noise from report-derived 

annotations and limited bounding-box fidelity, which can cap achievable performance and hamper fine-grained 

localization. 

He et al., 2016 (ResNet)[2]. Residual learning with identity shortcuts stabilizes optimization of very deep convolutional 

neural networks, forming a backbone for many medical imag- ing tasks. Pros are strong representational capacity and 

reli- able training dynamics. Cons include higher compute/memory demands for large variants and potential overfitting 

on small medical datasets without careful regularization or transfer learning. 

Rajpurkar et al., 2017 (CheXNet)[3]. DenseNet-121 is fine- tuned for pneumonia detection on CXR with strong 

reported results in public benchmarks. Pros are a robust, reproducible baseline that popularized transfer learning on CXR. 

Cons include a single-disease focus and sensitivity to dataset bias and domain shifts across institutions. 

Ojala et al., 2002 (LBP)[4]. Local Binary Patterns capture micro-texture by thresholding local neighborhoods. Pros are 

computational efficiency and robustness to moderate illumi- nation changes, making LBP a complementary handcrafted 

descriptor. Cons include limited expressiveness for complex patterns and sensitivity to scale and noise compared to deep 

features. 

Harris & Stephens, 1988 (Harris corners)[5]. Corner detec- tion via structure tensor response summarizes local 

intensity variation. Pros are simplicity and speed for geometric cues. Cons are limited invariance to scale/illumination 

and modest utility for subtle pathology without additional context. 

Canny, 1986 (Canny edges)[6]. Multi-stage edge detection provides thin, well-localized edges. Pros are strong structural 
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delineation helpful for shape analysis. Cons are parameter sensitivity and fragility under noise or low contrast common 

in radiography. 

Daugman, 1985 (Gabor filters)[7]. Oriented, bandpass filters capture frequency-orientation content. Pros are 

biologically inspired texture features complementary to convolutional neu- ral networks. Cons are parameter tuning 

burden and higher computational cost, with limited adaptability compared to learned features. 

Ronneberger et al., 2015 (U-Net)[8]. Encoder-Decoder net- work with skip connections enables precise biomedical seg- 

mentation with few annotations. Pros are excellent localization 

and data efficiency. Cons include memory demands at high resolution and potential context loss at the bottleneck if not 

mitigated. 

Isensee et al., 2021 (nnU-Net)[9]. Self-configuring pipeline auto-tunes preprocessing, architectures, and training for 

new datasets. Pros are consistently strong out-of-the-box results and reproducibility. Cons are heavy compute/storage 

needs and long training times. 

Johnson et al., 2019 (MIMIC-CXR)[10]. Publicly available CXR dataset with labels from clinical notes. Pros are 

openness, size, and linkage to rich EHR context. Cons are NLP labeling noise and clinical biases that challenge 

generalization. 

Yan et al., 2018 (DeepLesion)[11]. Large CT lesion dataset for detection/localization using deep detectors. Pros are 

scale and diversity fostering universal lesion detection research. Cons are CT focus and modality mismatch relative to 

CXR classification tasks. 

Antonelli et al., 2022 (MSD)[12]. Multi-task segmentation benchmark standardizing evaluation across 

organs/modalities. Pros are rigorous, comparable baselines and generalization emphasis. Cons are segmentation-centric 

scope and limited direct applicability to CXR classification. 

Baltruschat et al., 2019[13]. Empirical comparison of back- bones and training regimes for multi-label CXR classifica- 

tion. Pros are practical guidance on architecture/optimization choices. Cons are dataset-specific conclusions and limited 

coverage of newer transformer/SSL(Secure Sockets Layer) paradigms. 

Lakhani & Sundaram, 2017 (TB CXR)[14]. CNN-based tuberculosis classification on CXR. Pros are clinically targeted 

validation and proof-of-concept performance. Cons are narrow label space and potential dataset bias limiting 

generalizability. Chattopadhyay et al., 2018 (Grad-CAM++)[15]. Improved weighting of gradients enhances 

localization for multiple oc- currences. Pros are sharper, more reliable maps than vanilla Grad-CAM in multi-instance 

settings. Cons are extra com- putation and persistent dependence on convolutional layer resolution. 

Ribeiro et al., 2016 (LIME)[16]. Local surrogate mod- els explain individual predictions via perturbations. Pros are 

model-agnostic interpretability and human-readable explana- tions. Cons are instability to sampling noise and potentially 

misleading locality for images. 

Sundararajan et al., 2017 (Integrated Gradients)[17]. Path- integral attributions from a baseline to the input ensure 

desir- able axioms. Pros are theoretical guarantees and broad appli- cability. Cons are sensitivity to baseline choice and 

sometimes diffuse visualizations. 

Smilkov et al., 2017 (SmoothGrad)[18]. Noise-averaged gradients denoise saliency maps. Pros are clearer, less speckled 

attributions. Cons are increased compute and potential blurring of fine details. 

Litjens et al., 2017 (Survey)[19]. Thorough examination of deep learning in medical imaging. Pros are broad synthesis 

and methodological best practices. Cons are inherent to sur-veys—no single technique and partially outdated given 

rapid field evolution. 

Dosovitskiy et al., 2021 (ViT)[20]. Patch-based Vision Trans- former for image classification. An image is worth 16*16 

words. Pros are global receptive fields and strong performance with large-scale pre-training. Cons are data hunger and 

weaker results without substantial pre-training or strong regularization in medical domains. 

Liu et al., 2021 (Swin Transformer)[21]. Hierarchical trans- former with shifted window attention. Pros are good 

accuracy- efficiency trade-offs and scalability to detection/segmentation. Cons are reliance on pretraining and potential 

limitations in capturing very long-range dependencies at shallow depths. 

Azizi et al., 2021 (Big SSL)[22]. Large-scale self-supervised pretraining for medical images, then transfer to downstream 

tasks. Pros are label efficiency and improved generalization under limited annotations. Cons are significant compute/data 

requirements for pretraining and engineering complexity. 

 

III. DATASET AND PREPROCESSING 

 

The primary dataset used is the NIH ChestX-ray14 with 112,120 images labeled across 14 diseases. Supplementary 

datasets include CheXpert (224k), RSNA Pneumonia (30k), and COVID-19 Radiography ( 6k). Images were adjusted to 

224×224, normalized using ImageNet statistics, augmented with rotations, flips, and brightness variations. Feature fusion 

combines ResNet50 (512D) along with handcrafted features (20D) to produce 532D fused feature vector. A 80-10-10 

split(train/val/test) was maintained using stratified sampling. 
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IV. METHODOLOGY 

 

The proposed architecture fuses two processing branches: 

(1) a ResNet50 deep learning branch and (2) a classical image processing branch extracting handcrafted features like 

edges, corners, and textures. Both outputs are concatenated before final classification. The proposed hybrid approach 

aims to combine data-driven learning with domain-specific feature robustness. The flowchart representing the 14 different 

thoracic diseases is shown in Fig. 1. 

 

V. HYBRID ARCHITECTURE 

 

The hybrid model integrates classical and deep learning features and is shown in Fig. 2. 

 

A. Classical Feature Extraction 

• Contrast Enhancement: Histogram Equalization and CLAHE improve visibility of lung structures. 

• Edge Detection: Multi-scale Sobel and Canny operators capture fine and coarse boundaries. 

• Corner Detection: Harris and Shi-Tomasi detectors iden- tify structural junctions. 

• Texture Analysis: Local Binary Pattern (LBP) and Gabor filter responses encode micro-texture variations. 

 

 
Fig. 1: Flowchart of the 14 thoracic disease labels. 
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Fig. 2: Proposed Hybrid Architecture showing ResNet50 + classical features fusion 

 

B. Deep Feature Extraction 

ResNet50 serves as the deep branch backbone with skip connections preserving hierarchical features. Squeeze and Ex- 

citation block along with the attention modules emphasize salient channels. The Global Average Pooling layer produces 

compact deep embeddings. 

 

C. Feature Fusion 

Both feature types are joined together and they are passed through fully connected layers (BatchNorm → Dropout → 
ReLU). An auxiliary SVM trained on handcrafted features operates in parallel and ensemble voting stabilizes predictions. 

 

D. Training Configuration 

The proposed hybrid model is trained using Adam optimizer with a learning rate of 0.0001 and a weight decay equal 

to the value of learning rate, in order to balance convergence speed and generalization. The objective is Binary Cross- 

Entropy with Logits Loss, which is appropriate for multi-label classification across the 14 thoracic diseases. To adaptively 

reduce the learning rate when validation performance plateaus, we employ Reduce LROnPlateau with a patience of 3 

epochs and a decay factor of 0.5. Training is supervised with a batch size of 16 for 20 epochs using images adjusted to 

224×224 pixels, which aligns with the ResNet50 input specification and provides a practical trade-off between 

performance and computational cost. 

 

E. GRAD-CAM Implementation 

For explainable AI visualization, we implement Grad-CAM to produce attention maps that highlights the image segments 

and exerts the greatest impact on the predictions generated by the model. Concretely, we tap into the last convolutional 

layer of ResNet50 to obtain its feature maps and to compute the gradients of chosen target logit with respect to these 

maps. These gradients serve as importance weights that are aggregated into a single class-discriminative heat map. After 

applying a ReLU to retain only positive contributions and normalizing the response, the heat map is resized to the input 

image resolution and overlaid on the original chest X-ray. This yields an interpretable visualization that reveals the 

anatomical focus of the model for each predicted disease. 

 

VI. RESULTS AND EVALUATION 

 

Performance was evaluated using metrics such as Accuracy, Precision, Recall, and AUC. Table I presents the comparison 

between the baseline ResNet50 and the proposed hybrid model. 
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TABLE I: Performance Comparison of Baseline and Hybrid Models 

 

                Metric        ResNet50 (Baseline)    Proposed Hybrid Model 

 
 

                                                        Accuracy            91.2%                93.8% 

 

 

 

 

 
Fig. 3: Training loss curves and per-class AUC scores for the hybrid ResNet50 + handcrafted features model on 

NIH ChestX-ray 14 dataset, showing model convergence and dis- ease classification performance across 14 pathology 

classes. 

Fig. 4: Grad-CAM heatmap and overlay for the hybrid ResNet50 + handcrafted features model on a chest X-ray 

(predicted Infiltration vs. target Pneumothorax), highlighting salient regions guiding the decision. 

 

VII. EXPLAINABILITY 

 

To ensure transparency, Grad-CAM and Guided Grad-CAM visualize class-specific activations. The resulting heat maps 

are overlaid on edge-detected images, enabling radiologists to verify the model and focus on important regions. 

Precision 90.5% 93.0% 

Recall 91.0% 94.5% 

AUC 0.952 0.968 
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VIII. DISCUSSION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Grad-CAM heatmap and overlay for the hybrid ResNet50 + handcrafted features model on a chest X-ray 

(predicted Infiltration vs. target Nodule) 

 

A. Contributions 

• Hybrid Architecture Design: A novel combination of ResNet50 CNN with classical computer vision features for 

enhanced disease classification performance. 

• Multi-label Classification: Comprehensive support for 14 different thoracic diseases using the NIH Chest X-ray 14 

dataset. 

• Explainable AI Integration: Implementation of Grad- CAM visualization for clinical interpretability and model 

transparency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Grad-CAM heatmap and overlay for the hybrid ResNet50 + handcrafted features model on a chest X-ray 

(predicted Infiltration vs. target Cardiomegaly) 
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Fig. 7: Grad-CAM heatmap and overlay for the hybrid ResNet50 + handcrafted features model on a chest X-ray 

(predicted Infiltration vs. target Atelectasis) 

Fig. 8: Grad-CAM heatmap and overlay for the hybrid ResNet50 + handcrafted features model on a chest X-ray 

(predicted Infiltration vs. target Infiltration) 
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s  

Fig. 9: Grad-CAM heatmap and overlay for the hybrid ResNet50 + handcrafted features model on a chest X-ray 

(predicted Infiltration vs. target Effusion) 

 

• Robust Error Handling: Comprehensive error handling mechanisms for real-world deployment scenarios. 

• Complete Pipeline: End-to-end training, evaluation, and visualization pipeline for medical imaging applications. 

 

B. Architectural Benefits 

The hybrid architecture successfully combines the repre- sentational power of deep learning with the interpretability and 

robustness of classical computer vision. The integration of handcrafted features provides additional domain knowledge 

that enhances the performance and reliability of the model. 

 

C. Clinical Implications 

The explainable AI component through Grad-CAM visu- alization addresses the critical need for interpretability in 

medical AI applications. This feature enables clinical vali- dation of model decisions by providing visual evidence 

of the regions that exert the greatest impact on the predictions generated by the model. Medical professionals can identify 

potential biases or errors by examining whether the highlighted regions align with known pathological patterns. 

Furthermore, the transparency provided by Grad-CAM visualizations en- hances trust and adoption by medical 

professionals, as they can understand and validate the model’s reasoning process before incorporating it into clinical 

workflows. 

 

D. Limitations and Future Work 

Current limitations of the proposed approach include com- putational overhead from handcrafted feature extraction, which 

increases processing time compared to pure deep learning methods. The performance of the model is also dependent on 

image quality and preprocessing steps, that requires careful attention for data preparation. Additionally, there is a need 

for validation on diverse clinical datasets from different institu- tions and populations to ensure generalizability across 

various imaging conditions and statistical data of the patients. 

 

Future work will focus on optimization of feature extraction efficiency to reduce computational overhead while maintain- 

ing performance benefits. Integration of additional imaging modalities such as CT scans, MRI and ultrasound could 

expand the model’s applicability across different diagnostic scenarios. Most importantly, comprehensive clinical 

validation studies with radiologists are essential to assess real-world performance, clinical utility, and potential impact 

on diag- nostic accuracy and workflow efficiency in actual healthcare facilities. 

 

IX. CONCLUSION 

 

This work presents a comprehensive hybrid deep learn- ing methodology for chest X-ray disease classification that 

successfully combines ResNet50-based deep features with classical computer vision techniques.The proposed architec- 

ture demonstrates robust performance on the NIH Chest X- ray 14 dataset while providing explainable AI capabilities 

through Grad-CAM visualization.The integration of hand- crafted features enhances the model’s interpretability and ro- 
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bustness, making it suitable for clinical deployment.The com- plete pipeline, including training, evaluation and 

visualization components, provides a comprehensive solution for medical imaging applications. Future research 

directions include op- timization of the hybrid architecture, expansion to additional imaging modalities and 

comprehensive clinical studies that are valid in order to assess real-world performance and clinical utility. 
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