

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering Impact Factor 8.414

Refereed journal

Vol. 13, Issue 9, September 2025

DOI: 10.17148/IJIREEICE.2025.13927

AI-Driven Robotics and Automation

Prof. Mr. Arsalan A. Shaikh*1, Miss. Komal Narendra Pawar²

Professor, Department of Computer Applications, SSBT COET, Jalgaon Maharashtra, India¹ Research Scholar, Department of Computer Applications, SSBT COET, Jalgaon Maharashtra, India²

Abstract: Research Problem: The need for greater flexibility, intelligence, and adaptability in robotic systems beyond traditional, pre-programmed automation. Objectives: To explore how AI, specifically machine learning and computer vision, enhances robotic capabilities, to evaluate the performance of an AI-driven system, and to discuss its implications. Methods: Briefly describe the research approach, such as a simulation-based experiment using reinforcement learning to train a robotic arm, a case study analysis of a specific industry, or a comprehensive literature review. Key Findings: State the primary results, for example, "The AI-driven system achieved a 25% increase in task completion speed and a 40% reduction in error rates compared to conventional automation. Conclusion: Summarize the overall significance of the findings for the field.

I. INTRODUCTION

Start with a strong statement about the Fourth Industrial Revolution and the paradigm shift from fixed automation to intelligent, adaptive systems. Background: Provide a brief history of robotics, from simple industrial robots to the integration of AI. Explain the limitations of older systems (e.g., lack of adaptability to unstructured environments). Motivation and Importance: Discuss why AI-driven robotics is a critical area of study. Highlight its potential to transform industries like manufacturing, logistics, healthcare, and agriculture by improving efficiency, safety, and productivity. Research Question(s) / Hypothesis: Clearly state the central question(s) your paper will answer. Roadmap: Outline the paper's structure, guiding the reader through each section.

AI-Driven Robotics and Automation Data Acquisition Start (Sensors, Cameras) Al Model **Passive Use** Natural Language (Machine Learning (Object Recogissing) (scrolling Tre, feeds) Deep Leaning) Interpentation **Uprreaed Social** Motion Planning & Esteem & Feature **AI Model Training** Exmage Issues & Control (Machine Learning, (Deep Leaning) **Robotics Hardware Automation Systems** (Actutors, Grippers) Line, Logistics) **Real-World Applications** Maufacting & Vehicles Start Heutnmous & Surgery Exploration & Research

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414

Refereed journal

Vol. 13, Issue 9, September 2025

DOI: 10.17148/IJIREEICE.2025.13927

II. LITERATURE SURVEY / LITERATURE REVIEW

I. Goal: To establish the current state of knowledge and identify gaps in the research.

II. Content:

- a. Fundamental Concepts: Define core concepts such as AI, Machine Learning (ML), Deep Learning (DL), Computer Vision, and Natural Language Processing (NLP) in the context of robotics.
- b. **Historical Context:** Briefly review the evolution of AI-robotics research, from early symbolic AI to modern data-driven approaches.
- c. **Key Application Areas:** Group existing research by industry or application.
 - i. **Manufacturing and Logistics:** Discuss advancements in **collaborative robots (cobots)**, autonomous mobile robots (AMRs), and intelligent quality control systems. ii. **Healthcare:** Review surgical robots, robotic assistants for elderly care, and pharmacy automation.
 - iii. Agriculture: Explore agri-bots for planting, harvesting, and crop monitoring.
 - iv. Technological Focus: Detail the specific AI techniques used in robotics.
 - V. **Perception:** Discuss how computer vision enables robots to "see" their environment (e.g., object recognition, pose estimation, and 3D mapping).
 - Vi. Cognition and Decision-Making: Explain how ML algorithms, especially reinforcement learning (RL), allow robots to learn from experience and make real-time decisions.
- d. Gaps and Challenges: Point out areas needing more research, such as algorithmic bias, ethical considerations, human-robot interaction (HRI), and scalability.

III. RESEARCH DESIGN

- Research Design: Specify the research approach, whether it's an experimental design (e.g., building and testing a prototype), a simulation-based study, or a case study analysis.
- Data Collection: Explain how data was obtained.
 - o For a technical paper: Describe the dataset used for training the AI model (e.g., a custom dataset of images or sensor readings).
 - o For a non-technical paper: Detail the sources of information (e.g., academic databases, industry reports, expert interviews).
- Research Tools: List all software and hardware used.
 - O Hardware: Robot platforms (e.g., Boston Dynamics Spot, Universal Robots), sensors (e.g., LiDAR, cameras), and computational hardware (e.g., GPUs).
 - O Software: Programming languages (e.g., Python), frameworks (e.g., ROS Robot Operating System, PyTorch, TensorFlow), and simulation environments (e.g., Gazebo).
- Implementation & Analysis: Provide a step-by-step account of your process.
 - o **Data Preprocessing:** Explain how you cleaned and formatted the data.
 - o Model Training: Describe the specific ML model used, its architecture, and the training process.
 - Evaluation: Specify the performance metrics you used to test the system's effectiveness (e.g., accuracy, latency, pathfinding efficiency).

IV. RESULTS

- I. **Presentation of Findings:** Present your data objectively, without interpretation. Use clear visuals to make the information easy to understand.
- II. Content:
 - a. **Performance Metrics:** Use **tables and graphs** to show the quantitative results of your experiments or simulations.
 - i. Example: A line graph showing the robot's learning curve over time (e.g., task completion time vs. training episodes).
 - b. Qualitative Observations: Describe any non-numerical findings, such as the robot's behavior in different scenarios.
 - **c. Comparison:** Present a direct comparison of the AI-driven system's performance against a non-AI or conventional system.

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering Impact Factor 8.414

Refereed journal

Vol. 13, Issue 9, September 2025

DOI: 10.17148/IJIREEICE.2025.13927

d. Logical Organization: Structure the results to directly address the objectives outlined in your introduction.

V. DISCUSSION

- **Interpretation of Results:** Explain what your findings mean. Connect the numbers from the "Results" section to the objectives of your research.
- Comparison with Literature: Discuss how your results fit into the existing body of research. Do they support, contradict, or extend previous findings?
- Implications of Findings:
 - o **Technical:** What do your results suggest for future development in AI robotics?
 - o **Practical:** How could your findings be applied in a real-world setting? (e.g., in a smart factory or for autonomous delivery).
- Limitations: Acknowledge any weaknesses in your study, such as the size of the dataset, limitations of the simulation environment, or any assumptions made.
- Ethical Considerations: Discuss the broader ethical implications of your work, such as job displacement, data privacy, and accountability for autonomous systems.

VI. CONCLUSION

Summary: Briefly restate the main findings of your research and their significance. Answer to Research Question: Directly answer the research questions posed in your introduction. Future Directions: Propose new research avenues based on your findings and identified limitations. Final Statement: End with a strong, forward-looking statement about the future of AI-driven robotics.

REFERENCES

- [1]. Bogen, M., & Rieke, A. (2018). Help wanted: An examination of hiring algorithms, equity, and bias. Upturn Report.
- [2]. Gupta, S., & Arora, N. (2020). Resume classification using natural language processing. International Journal of Computer Applications, 176(2), 45–51.
- [3]. Market sand Markets Reports: These market research reports, such as the "Industrial Robotics Market Report," provide valuable data on market size, growth trends, key players, and emerging technologies. They often include sections on the impact of AI and Industry 4.0/5.0.
- [4]. Start Us Insights Report: The "Artificial Intelligence and Robotics Report 2025" is a great source for current data on the industry, including funding trends, key innovation areas, and a list of companies and startups driving the field.
- [5]. Precedence Research & Grand View Research: These firms publish detailed market analysis reports on the "AI Robots Market," offering forecasts, segmentation by technology (e.g., machine learning, computer vision), and insights into key market drivers and restraints.