IJIREEICE ISSN (0) 2321-2004, ISSN (P) 2321-5526

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering
Impact Factor 8.414 :>: Peer-reviewed & Refereed journal :: Vol. 13, Issue 10, October 2025
DOI: 10.17148/IJIREEICE.2025.131039

Enhancing Prediction and Explainability with
Machine Learning Using SHAP on OASIS MRI
Data Compared to Traditional Diagnosis
Methods

Mrinmayi Verma', Neelam Sanjeev Kumar?
Student, CSE (E.Tech), SRM Institute of Science and Technology, Vadapalani, Chennai, India'
Assistant Professor SG, CSE (E.Tech), SRM Institute of Science and Technology, Vadapalani, Chennai, India?

Abstract: Alzheimer’s disease (AD) has emerged as a significant health challenge globally, with projections reaching
over 150 million affected individuals by 2050. Early diagnosis remains pivotal in managing disease progression and
improving patient quality of life. Traditional diagnostic techniques rely heavily on neuropsychological assessments and
qualitative MRI analysis, which suffer from subjective biases and inter-observer variability, often delaying diagnosis or
leading to inaccuracies (Marcus et al., 2007; Marcus et al., 2010).

Recent breakthroughs in machine learning (ML), especially ensemble models combined with explainability techniques
like SHAP (SHapley Additive exPlanations), have penned a new era in medical diagnostics where models can be both
accurate and transparent (Lundberg & Lee, 2017). Our approach leverages Random Forest classifiers trained on the
OASIS dataset—comprising heterogenous, multimodal data including MRIs, clinical scores, and demographics. The
model’s decision process is elucidated through SHAP, allowing clinicians to understand the relative importance of
features such as regional brain atrophy, age, and cognitive scores, thus aligning model outputs with biological plausibility
and increasing clinical trust.

Furthermore, spatial localization through Grad-CAM overlays provides anatomical context to model decisions,
highlighting brain regions like hippocampus and temporal lobes that are traditionally associated with AD (Selvaraju et
al., 2017). This combined approach exemplifies a transparent, high-performing framework compatible with clinical
workflows, offering a benchmark for future multi-modal, explainable AI models for neurodegenerative diseases, and
emphasizes the road toward trustworthy Al-driven diagnostics that reconcile accuracy with interpretability (Mahavar et
al., 2025).
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I INTRODUCTION

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder and the most prevalent cause of dementia
globally, characterized by progressive memory loss, cognitive impairment, and eventually loss of autonomy and function
(Marcus et al., 2007; Mahavar et al., 2025). The global burden of AD is staggering, with the World Health Organization
estimating that over 55 million people live with dementia worldwide, a figure projected to more than triple by 2050 due
to population aging (Gauthier et al., 2020; Khosroshahi et al., 2025). The social, economic, and psychological impact on
patients, caregivers, and healthcare systems has intensified the urgency for early and accurate diagnosis.

Despite its critical importance, diagnosing Alzheimer’s remains a challenge. Clinically, diagnosis is often based on
neuropsychological examinations, such as the Mini-Mental State Examination (MMSE), and ratings such as the Clinical
Dementia Rating (CDR), supplemented by neuroimaging techniques, primarily magnetic resonance imaging (MRI)
(Marcus et al., 2010). While these assessments provide vital information, their reliability is hindered by subjective
interpretation and variability among clinicians, as well as subtle overlapping symptoms particularly in early stages, which
often leads to delayed or inaccurate diagnoses (Storandt & Grant, 2017). Furthermore, structural MRI can reveal
characteristic brain atrophy patterns in AD, especially in the hippocampus and temporal cortex; however, manual analysis
requires significant expertise, is labor-intensive, and prone to observer bias (Vieira et al., 2017).

This scenario has catalyzed the integration of artificial intelligence, particularly machine learning (ML), into
neuroimaging analysis. ML models can detect complex, nonlinear patterns in high-dimensional datasets that may be
invisible to human analysts, thereby enabling automated, objective, and potentially earlier detection of AD (Dardouri et
al., 2025). Among various datasets, the Open Access Series of Imaging Studies (OASIS) offers an extensive repository
of cross-sectional and longitudinal MRI scans combined with clinical and demographic information (Marcus et al., 2007).
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It has become a canonical dataset for developing and benchmarking ML algorithms for neurodegenerative disease
diagnosis.

Nevertheless, the promise of ML in clinical diagnostics is tempered by its "black-box" nature, where model decisions
are opaque and not intuitively explainable to clinicians and patients (Holzinger et al., 2019). The lack of transparency
impacts clinical trust and acceptance, as practitioners naturally demand interpretable evidence to support patient outcomes
and therapeutic decision-making (Rudin, 2019). Bridging this gap requires integrating explainable Al (XAI) techniques
that illuminate how models arrive at conclusions, ensuring reliability, fairness, and regulatory compliance (Doshi-Velez
& Kim, 2017).

SHapley Additive exPlanations (SHAP) have emerged as a powerful XAl tool, leveraging cooperative game theory to
attribute the prediction of any model to its input features in a consistent and accurate manner (Lundberg & Lee, 2017).
When coupled with spatial interpretability tools like Gradient-weighted Class Activation Mapping (Grad-CAM), which
highlight anatomically relevant regions influencing the classifier’s decision on neuroimages, these techniques offer
comprehensive insight into model behavior (Selvaraju et al., 2017). This dual explainability approach not only uncovers
global feature importance but also empowers clinicians with patient-specific understanding and confidence in automated
findings.

The work herein aims to implement an explainable Random Forest classification pipeline on the OASIS MRI dataset
for Alzheimer’s disease detection, emphasizing robust model performance and interpretability via SHAP and Grad-CAM.
This study contributes to the growing evidence supporting explainable ensemble learning methods as viable tools for
neurodegenerative disease diagnosis, with implications for clinical adoption and patient care. Furthermore, the
identification of key predictive features aligns with emerging biological insights, potentially providing markers beyond
standard clinical scales that could support personalized medicine approaches.

In the following sections, we detail related state-of-the-art methods in AD diagnosis using ML and XAI, outline the
dataset and modeling framework employed, present comprehensive results including model evaluation and explainability
analysis, and discuss the broader clinical and research implications of this work.

IL. METHODOLOGY

A. Dataset Description

The study utilizes the Open Access Series of Imaging Studies (OASIS) dataset, awidely recognized and
publicly available  repository containing MRIscans and corresponding clinical  information relevant  to
Alzheimer's disease research (Marcus et al., 2007; Marcus et al., 2010). The dataset comprises cross-sectional as well as
longitudinal MRI data from over 1,000 subjects aged between 18 and 96 years. Among these, a significant proportion
includes elderly individuals clinically diagnosed with varying stages of Alzheimer's, ranging from very mild to moderate
dementia. Important demographic variables such as age, sex, education level, and socio-economic status accompany the
imaging data, providing a comprehensive profile for each participant.

Subjects' cognitive function was assessed with standardized neuropsychological instruments, including the Mini-Mental
State Examination (MMSE) and Clinical Dementia Rating (CDR), which serve as clinical indicators to confirm
diagnosis and severity. The MRI acquisitions present T1-weighted images with high spatial resolution, allowing detailed
neuroanatomical assessment. Multiple scans per subject inthe longitudinal segment enable evaluation of disease
progression over time. The dataset’s wealth and longitudinal nature make it highly valuable for developing and
validating predictive models of Alzheimer's disease (Dardouri et al., 2025).

B. Data Preprocessing

MRI data and clinical variables require substantial preprocessing to ensure compatibility and maximize model utility.
MRI images underwent standard image processing steps, including noise reduction, skull stripping, intensity
normalization, and spatial registration to a common template. These steps are essential to correct for individual variability
and imaging artifacts, standardize image intensities, and facilitate voxel-based morphometric analysis (Jumaili et al.,
2025).

Quantitative neuroimaging markers including normalized whole brain volume (nWBYV), estimated total intracranial
volume (eTIV), and cortical thickness measures were extracted using automated segmentation pipelines. Demographic
and clinical variables such as age, sex, MMSE, and CDR scores were cleaned, with categorical variables encoded
numerically for consistent input representation.

Handling missing values is critical: various imputation techniques such as mean/mode imputation or model-based
methods ensure no bias in data retention. The entire dataset was then normalized feature-wise to zero mean and unit
variance to facilitate learning convergence. To mitigate class imbalance—common in medical datasets—techniques like
stratified sampling were used during dataset partitioning to maintain representative distributions in training and testing
sets (Mahavar et al., 2025).
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C. Random Forest Classification

Random Forest (RF) was selected as the primary classifier due to its robustness, interpretability, and effectiveness in
handling mixed data types and noisy inputs frequently encountered in biomedical datasets (Breiman, 2001). RF operates
by constructing an ensemble of decorrelated decision trees, each trained on bootstrap samples of the training data, with
randomized feature selection for splitting. The ensemble vote aggregates individual tree predictions to produce a final
classification, enhancing generalization and reducing overfitting.

Hyperparameter tuning involved optimizing parameters such as the number of trees, maximum tree depth, minimum
samples per leaf, and criterion for split quality. This was achieved through grid search combined with k-fold cross-
validation to identify the combination that maximized the validation accuracy while preserving model generalizability.
RF inherently provides feature importance metrics based on the reduction of impurity across all trees, supplying an initial
lens into which features contribute most to classification decisions (Mahavar et al., 2025). However, this is complemented
by post-hoc explainability for finer granularity and local interpretability.

D. Model Training and Evaluation

The dataset was split into training and testing subsets using stratified random splitting to maintain class distributions
reflective of the original dataset. Typically, 80% of data was allocated for training and 20% for testing. Cross-validation
on the training set was employed to monitor learning progress and mitigate overfitting.

Training involved feeding the processed features into the RF model and updating tree structures iteratively to minimize
classification errors. The model’s performance was evaluated on the test set using multiple metrics critical in clinical
contexts: accuracy, precision, recall (sensitivity), specificity, Fl-score, and the area under the receiver operating
characteristic curve (ROC-AUC). These metrics offer a comprehensive understanding of model discriminative power,
error trade-offs, and clinical suitability (Mahavar et al., 2025; Jumaili et al., 2025).

Beyond raw performance, statistical significance testing such as McNemar’s test was employed to compare classifier
behavior across cross-sectional vs. longitudinal data, ensuring observed performance is not due to chance (Khosroshahi
et al., 2025). External validation with independent datasets is encouraged for future work to confirm generalizability.

E. SHAP-Based Explainability Analysis

While RF provides feature importance, SHapley Additive exPlanations (SHAP) offers a theoretically grounded and
practically interpretable method to explain individual predictions (Lundberg & Lee, 2017). SHAP values assign an
additive contribution of each feature to the prediction outcome for every sample by simulating conditional expectations
across feature subsets.

In this study, SHAP was applied post-model training to dissect the impact of input variables on both global model
behavior and patient-specific predictions. Results are visualized via SHAP summary plots highlighting population-level
feature rankings, dependence plots illustrating feature interaction effects, and force plots detailing the contribution for
individual cases.

This granularity serves clinicians by elucidating the role of known biomarkers such as normalized whole brain volume
and MMSE scores, reinforcing biological plausibility and aiding clinical decision-making (Khosroshahi et al., 2025).
Furthermore, SHAP facilitates the discovery of subtle variable associations or composite biomarkers that may not be
evident through traditional analyses.

I11. RESULTS

A. Model Performance Metrics

The Random Forest (RF) classifier trained on the OASIS MRI dataset demonstrated strong predictive ability in
distinguishing demented from non-demented subjects. Across multiple cross-validation folds, the model achieved an
average classification accuracy of approximately 84%, aligning favorably with recent similar studies which have reported
accuracies ranging from 82% to 88% for Random Forest and ensemble-based models on this dataset (Jumaili et al., 2025;
Khosroshahi et al., 2025). The balanced precision and recall scores illustrate the model’s competence in minimizing both
false positives and false negatives, which is particularly critical in clinical diagnostics to reduce misdiagnosis and
inappropriate intervention.

The sensitivity (recall), measuring correctly identified demented cases, averaged 87%, while specificity (true negative
rate) averaged 81%, indicating robustness in accurately classifying both affected and healthy individuals. The F1-score,
which harmonizes precision and recall, stood at 0.84, reinforcing the balanced performance of the classifier. The area
under the receiver operating characteristic curve (ROC-AUC), a metric of discrimination capability independent of
thresholds, consistently exceeded 0.90, suggesting excellent model consistency across decision boundaries (Mahavar et
al., 2025; Marcus et al., 2010).

Additional validation on the longitudinal subset of the OASIS dataset yielded comparable performance, affirming the
model’s capacity to maintain stable classification accuracy over time and highlighting its potential utility in monitoring
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disease progression (Jumaili et al., 2025; Marcus et al., 2010). Statistical tests such as McNemar’s test confirmed the lack
of significant differences in performance between cross-sectional and longitudinal data classifications, further
demonstrating model reliability.

B. Confusion Matrix and Error Analysis

A detailed confusion matrix analysis revealed that most misclassifications occur between very mild dementia and
controls, reflecting the inherent clinical overlap of early-stage cognitive impairment with typical aging-related changes.
These edge cases pose challenges to any diagnostic model due to subtle symptomatology and imaging markers (Goyal et
al., 2025). However, misclassification rates remain below clinically significant thresholds, ensuring a low risk of
inappropriate clinical recommendation.

C. SHAP Explainability Analysis

The SHAP-based feature attribution analysis provided crucial interpretability insights into model decision-making.
Global SHAP summary plots identified age, normalized whole brain volume (nWBYV), hippocampal volume, MMSE
score, and Clinical Dementia Rating (CDR) as the most influential features driving predictions (Lundberg & Lee, 2017,
Holzinger et al., 2019). These findings align with established neuropathological understanding—advanced age and
decreased brain volumes coupled with cognitive assessments are well-correlated with Alzheimer’s pathology.
Visualizations demonstrated the positive contribution of increased age and decreased nWBYV towards classification as
demented, while higher MMSE scores negatively impacted the dementia prediction in expected patterns. Individual-level
SHAP force plots showcased patient-specific rationale, allowing clinicians to trace exactly which biomarkers most
influenced the diagnostic label for a given subject (Khosroshahi et al., 2025). This level of granularity significantly
enhances clinical trust and facilitates personalized treatment planning.

D. Grad-CAM Spatial Visualization

Complementing SHAP interpretations, Grad-CAM visual analysis of selected MRI cases highlighted focal regions in the
hippocampus, entorhinal cortex, and posterior cingulate gyrus, which are known targets of neurodegeneration in AD
(Selvaraju et al., 2017; Lee et al., 2024). These visual maps provide an intuitive anatomical basis for classification,
bridging the gap between opaque machine learning outputs and human clinical expertise.
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Feature Relationships and Dementia Status: OASIS Longitudinal
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E. Comparative Performance with Literature

Complementing Our results are consistent with state-of-the-art benchmarks in Alzheimer’s diagnosis using OASIS data
and other cohorts such as ADNI. Random Forest and other ensemble techniques remain competitive with complex deep
learning models, offering benefits in interpretability and lower computational costs (Mahavar et al., 2025; Jumaili et al.,
2025). Recent studies report classification accuracies ranging from 85% to 91%, with our model’s 84% accuracy standing
competitively within this spectrum (Khosroshahi et al., 2025; Jumaili et al., 2025).

The stable performance across cross-sectional and longitudinal data subsets indicates that the model not only detects
existing dementia but may assist in early disease monitoring, which is critical for clinical trials and therapeutic
intervention timing (Mahavar et al., 2025).

Iv. CONCLUSION

In this comprehensive study, we have presented an interpretable machine learning framework that combines Random
Forest classification with SHAP-driven explainability on the well-established OASIS MRI dataset for Alzheimer’s
disease (AD) diagnosis. The model demonstrated reliable and robust classification performance with an accuracy around
84%, supported by balanced sensitivity and specificity metrics, reaffirming the utility of ensemble learning for
neurodegenerative disorder prediction (Mahavar et al., 2025; Jumaili et al., 2025).

Importantly, by harnessing SHAP values, we provided insightful and granular explanations of the model’s decision-
making process, highlighting key neuroimaging and clinical predictors such as normalized whole brain volume,
hippocampal atrophy, MMSE, and CDR scores. This not only confirmed alignment with established neuropathology and
cognitive assessment standards but also catered to the critical requirement of transparency sought by clinicians (Lundberg
& Lee, 2017; Holzinger et al., 2019). Complementing SHAP, Grad-CAM localized pertinent brain regions, further
grounding predictions in biological plausibility and enhancing the clinical interpretability of the Al system (Selvaraju et
al., 2017).

The study’s findings support the integration of explainable ensemble learning models into routine diagnostic workflows,
facilitating objective, data-driven, and clinically interpretable AD detection. Moreover, the demonstrated stability across
cross-sectional and longitudinal datasets suggests potential applications in disease progression monitoring and
personalized treatment planning.

Looking forward, future research should explore multimodal data fusion, incorporating PET, EEG, and genetic
biomarkers alongside MRI to improve early detection sensitivity. Additionally, enriching model architectures with
symbolic reasoning and attention-based methods may enhance explainability and predictive power. Finally, rigorous
validation across diverse cohorts is necessary to ensure model generalizability and equitable healthcare impact.

Overall, this work represents a significant step towards ethical, responsible, and trustworthy AI deployment in
Alzheimer’s diagnosis and neurodegenerative disease management, bridging the gap between computational innovation
and clinical utility (Khosroshahi et al., 2025; Mahavar et al., 2025).
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