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Abstract: The exponential growth of online textual data has created a critical need for efficient information processing,
making automated text summarization an indispensable tool for mitigating information overload. While traditional
methods have struggled with fluency and coherence, the advent of Transformer-based models has defined a new state-
of-the-art. This paper introduces a robust, end-to-end framework for abstractive text summarization leveraging a pre-
trained BART (Bidirectional and Auto-Regressive Transformers) model. The system utilizes the facebook/bart-large-cnn
model, a specific variant fine-tuned on the CNN/Daily Mail news dataset, which employs a bidirectional encoder for
comprehension and an auto-regressive decoder to generate novel text. This Al core is deployed within a modern, scalable
web application, served via a high-performance FastAPI backend API and consumed by an interactive React user
interface. This paper details the full-stack architecture, from the model-loading strategy at server startup to the
asynchronous API request-response workflow. The model's performance is quantitatively evaluated using the standard
ROUGE metrics, demonstrating strong results with a mean ROUGE-1 F1 score of 50.61% and a ROUGE-L F1 score of
42.99%. We provide a detailed analysis of these metrics, including precision/recall trade-offs and score distributions,
confirming the model's high abstractive capability. This research serves as a comprehensive blueprint for the practical
implementation and evaluation of a state-of-the-art Transformer approach for real-world summarization applications.

Keywords: Abstractive Text Summarization, BART, Transformer, Natural Language Processing (NLP), ROUGE,
FastAPI, React, Full-Stack Application, CNN/Daily Mail.

L. INTRODUCTION

In the modern digital age, society is confronted with an unprecedented volume of textual information. From news articles
and academic papers to social media feeds and business reports, the sheer quantity of data far exceeds human cognitive
capacity for consumption and processing. This phenomenon, widely known as "information overload," poses a significant
challenge to individuals and organizations, hindering knowledge discovery and decision-making. Automated text
summarization (TS) emerges as a critical technological solution to this problem, offering a means to condense lengthy
documents into succinct, informative, and readable summaries, thereby retaining the most critical information while
discarding redundancy.

Automated text summarization is broadly categorized into two distinct paradigms: extractive and abstractive. Extractive
summarization operates by identifying and selecting the most salient sentences or phrases from the original source text.
These extracted segments are then concatenated to form a summary. While computationally simpler and factually
grounded (as it only uses words from the source), this method often results in summaries that lack fluency, coherence,
and grammatical polish. Abstractive summarization is a more advanced approach which seeks to emulate the human
process of summarization. It involves understanding the source text's main concepts and then generating new, original
sentences to articulate those concepts. This method can produce far more fluent, coherent, and concise summaries.
However, it is a significantly more complex task, facing challenges in factual consistency, attribution, and avoiding the
generation of "hallucinated" or nonsensical information.

For decades, the pursuit of high-quality abstractive summarization was hindered by technological limitations. Early

statistical and machine learning methods lacked the capacity to model the deep semantic nuances of language. The advent
of deep learning, particularly Recurrent Neural Networks (RNNs) and the sequence-to-sequence (Seq2Seq) architecture,
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marked a significant milestone. However, these models still struggled with long-range dependencies and information
bottlenecks.

The introduction of the Transformer architecture in 2017 revolutionized the field of Natural Language Processing (NLP)
[6]. Relying entirely on self-attention mechanisms, the Transformer demonstrated a superior ability to model complex,
long-range dependencies in text, enabling a new generation of pre-trained language models (PLMs) such as BERT [8]
and GPT [9].

This paper focuses on BART (Bidirectional and Auto-Regressive Transformers) [1], a state-of-the-art PLM
specifically designed for sequence-to-sequence tasks. BART uniquely combines a bidirectional encoder (like BERT) to
understand the full context of the input text with an auto-regressive decoder (like GPT) to generate fluent, new text.

II. LITERATURE REVIEW

The development of automated text summarization has a rich history, evolving from simple statistical heuristics to the
complex neural architectures of today.

A. Early Summarization Approaches

Early research in the 1950s and 60s focused on extractive methods. Luhn (1958) proposed using word frequency
(TF-IDF) as a proxy for sentence importance [19]. This was followed by graph-based methods, which represent
the document as a graph of interconnected sentences. Algorithms like TextRank [14] and LexRank [15] use
variations of the PageRank algorithm to identify the most "central" or "important" sentences in the graph, which
are then extracted to form the summary. These methods are unsupervised, fast, and remain strong baselines, but
are fundamentally limited to extraction.

B. The Deep Learning Sequence-to-Sequence Era

The resurgence of neural networks led to the sequence-to-sequence (Seq2Seq) model [7], which became the dominant

paradigm for abstractive summarization. A typical Seq2Seq model consists of:

1. AnEncoder: An RNN (often an LSTM or GRU) that reads the source text one word at a time, compressing its entire
meaning into a single, fixed-length "context vector."

2. A Decoder: Another RNN that reads the context vector and generates the summary one word at a time.

A critical breakthrough was the Attention Mechanism [8], which solved the information bottleneck of the fixed-length
context vector. Attention allows the decoder, at each step of generation, to "look back" at all the encoder's hidden states
and assign different "attention" weights, focusing on the most relevant parts of the source text to generate the next word.
Researchers built on this, creating models like the Pointer-Generator Network [13] which, using the CNN/Daily Mail
dataset, allowed the model to either generate a new word from its vocabulary (abstractive) or "point" to and copy a word
directly from the source text (extractive). This was crucial for handling rare or out-of-vocabulary (OOV) words, such as
names and places.

C. The Transformer Revolution

The seminal 2017 paper, "Attention Is All You Need" [6], introduced the Transformer, an architecture that dispenses

with recurrence entirely and relies solely on self-attention. This design allows for massive parallelization during training

and proved exceptionally effective at modeling long-range dependencies in text.

The Transformer ushered in the era of Pre-trained Language Models (PLMs), where a model is first pre-trained on a

massive, unlabeled text corpus (like the entire internet) to learn general language understanding, and then fine-tuned on

a smaller, task-specific labeled dataset. Key models in this paradigm include:

e BERT (Bidirectional Encoder Representations from Transformers): A powerful encoder-only model that
achieves state-of-the-art results on NLU tasks, but its encoder-only design makes it unsuitable for text generation
[9].

e GPT (Generative Pre-trained Transformer): A powerful decoder-only model that is excellent at fluent text
generation, but its auto-regressive (left-to-right) nature limits its understanding of deep bidirectional context [10].

o T5 (Text-to-Text Transfer Transformer): An encoder-decoder model that frames a// NLP tasks as a text-to-text
problem (e.g., "translate English to German: ...") [11].
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e PEGASUS (Pre-training with Extracted Gap-sentences): A model that uses a novel pre-training objective highly
tailored for summarization, where important sentences are masked from the input and the model must generate them
as output [12].

D. BART: The Model of Choice

This project's model, BART (Bidirectional and Auto-Regressive Transformers) [1], stands as one of the most
successful encoder-decoder architectures. It is pre-trained using a denoising autoencoder objective. This involves:

1. Taking a clean document.

2. Corrupting it with various "noise" functions (e.g., masking random tokens, deleting tokens, permuting sentences).
3. Training the model to reconstruct the original, clean document.

This pre-training scheme is highly effective. The bidirectional encoder learns to build a robust, deep understanding of
the corrupted input, while the auto-regressive decoder learns to generate fluent, coherent text to "fix" it. This makes
BART exceptionally well-suited for fine-tuning on summarization tasks. The facebook/bart-large-cnn model used in this
project is the large-version of BART, fine-tuned on the CNN/Daily Mail dataset [2], making it an ideal choice for
summarizing news articles.

E. Datasets and Evaluation

The CNN/Daily Mail dataset [2] has become the de facto benchmark for abstractive news summarization. It contains
over 300,000 news articles paired with multi-sentence bullet-point highlights, providing a large-scale

corpus for training and evaluation.

The standard metric for evaluation is ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [5]. ROUGE
compares a machine-generated summary to one or more human-written reference summaries based on N-gram overlap.

o ROUGE-1: Measures the overlap of unigrams (single words).
o ROUGE-2: Measures the overlap of bigrams (two-word phrases).
o ROUGE-L: Measures the longest common subsequence, which reflects sentence-level structural similarity.

While ROUGE is the standard, it is known to have limitations, as it primarily measures lexical overlap and not semantic
coherence, fluency, or factual consistency. Newer metrics like BERTScore [17] have been proposed to address these
shortcomings by measuring semantic similarity. However, ROUGE remains the most common metric for benchmarking.

III. SYSTEM ARCHITECTURE AND METHODOLOGY

This project implements a full-stack, three-tier application. The architecture is designed to be modular, scalable, and

high-performance, cleanly separating the AI model, the business logic, and the user interface.

A. Tier 1: The AI Core (Hugging Face BART)

The foundation of the application is the pre-trained Al model. We leverage the Hugging Face transformers library [16],

which provides a standardized interface for state-of-the-art models.

e  Model Selection: The chosen model is facebook/bart-large-cnn [cite: infer.py]. This decision was based on its state-
of-the-art performance on the CNN/Daily Mail dataset, which aligns perfectly with the common use case of
summarizing news articles.

e Implementation: We use a high-level pipeline function from the transformers library instead of manually loading
the model:

# From src/infer.py
_PIPELINE = hf pipeline("summarization", model="facebook/bart-large-cnn", device=device id)

This single line of code abstracts away several complex steps:

1. Downloading the model weights and configuration from the Hugging Face Hub.

2. Loading the appropriate BART tokenizer, which is specifically paired with this model.

3. Initializing the full BartForConditionalGeneration model on the correct device (GPU or CPU).

4. Wrapping all of this into a single callable object that handles tokenization, inference (running the text through the
model), and decoding (converting the output tokens back into a readable string).

5

B. Tier 2: The Backend Service (FastAPI)
The backend is responsible for exposing the Al model as a robust web service. We selected FastAPI [3] over other
Python frameworks like Flask or Django due to its modern features and performance.
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e High Performance: FastAPI is built on ASGI (Asynchronous Server Gateway Interface) rather than WSGI. This
allows it to handle I/O-bound operations (like waiting for network requests) asynchronously, leading to significantly
higher throughput.

e Type Safety: FastAPI uses Python type hints and Pydantic to enforce data validation. We define Summarize
Request and Summarize Response models. If a request arrives with missing or malformed data (e.g., text is not a
string), FastAPI automatically rejects it with a clear JSON error, improving robustness.

o Efficient Model Loading: A critical design pattern for production Al services is to avoid loading the large model
(which can be several gigabytes) on every single request. This is handled using a startup event:

# From src/api.py

@app.on_event("startup")

def startup_event():
# ... (device and path logic)
models_dict = _init models_from_ck(ckpt, device=device)
app.state.models = models_dict

This code ensures the BART model is loaded once when the server starts and is then stored in the app.state.models
object, making it instantly available for all subsequent requests.

e API Endpoint: The core logic resides in the /summarize endpoint. It retrieves the loaded model from the application
state, passes the user's text to the greedy summarize function (which calls the pipeline), and returns the summary.

e CORS: The CORSMiddleware is configured to allow requests from http://localhost:5173, enabling the React
frontend to communicate with the backend during development

C. Tier 3: The Frontend Application (React)
The user interface is a React [4] Single-Page Application (SPA). React is an ideal choice due to its component-based
architecture, which allows for the creation of reusable, stateful UI elements.
o UI Components: The Ul is simple and intuitive, consisting of:
o A large <textarea> for users to paste their source article.
o A <button> to submit the summarization request.
o A result display area (perhaps another text area or a <div>) to show the generated summary.
o A loading indicator to provide feedback during the API call.
o Data Flow: The application's state manages the input text, the output summary, and the loading status. On button
click, an event handler triggers an asynchronous fetch (or axios) request to the backend:
/I Example React component logic
const handleSubmit = async () => {
setLoading(true);
const response = await fetch('http://localhost:8000/summarize’, {
method: 'POST,
headers: { 'Content-Type'": 'application/json' },
body: JSON.stringify({ text: inputText, max len: 150 })
1)s
const data = await response.json();
setSummary(data.summary);
setLoading(false);
3
D. End-to-End Workflow
The complete, end-to-end workflow for a single user request is as follows:
1. User Action: The user pastes an article into the React frontend and clicks "Summarize."
2.  API Request: The React app sends an asynchronous POST request to the http://localhost:8000/summarize endpoint,
with the article text in the JSON body.
3. Backend Processing: The FastAPI server receives the request, validates the Pydantic model, and accesses the pre-
loaded BART pipeline from app.state.models.
4. Al Inference: The text is passed to the pipeline, which tokenizes it, runs it through the BART model on the
GPU/CPU, and decodes the output tokens into a summary string.
API Response: The FastAPI server returns a 200 OK response with a JSON body: {"summary": "..."}.
6. UI Update: The React app receives the JSON, updates its state with the new summary, and re-renders the UI to
display the result to the user.

v
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IV. DATA ANALYSIS AND RESULTS

The performance of the facebook/bart-large-cnn model was quantitatively evaluated using the ROUGE metrics, as
specified in the project's bart _eval rouge summary.json file. The evaluation was performed on a test split of the
CNN/Daily Mail dataset.

A. Quantitative Results
The primary evaluation metrics are the F1-scores for ROUGE-1, ROUGE-2, and ROUGE-L. The F1-score provides a
harmonic mean of precision and recall, offering a balanced view of the model's performance. The mean results from the

evaluation are presented in Table 1.

Table 1: Mean ROUGE scores (F1, Precision, and Recall).

Metric Mean F1-Score Mean Precision Mean Recall
ROUGE-1 50.61% 39.55% 72.10%
ROUGE-2 18.72% 14.49% 27.11%
ROUGE-L 42.99% 33.52% 61.38%

Average ROUGE F1

100

80 1

60 -

F1 (percent)

ROUGE-L

ROUGE-1 ROUGE-2

Figure 1: Bar chart of mean ROUGE F1-scores.

B. Interpretation of Results

A deep analysis of these scores reveals the model's specific characteristics:

e High ROUGE-1 F1 (50.61%): This is a strong score, indicating that the model is highly effective at identifying and
including the most important individual keywords (unigrams) from the source article. It successfully captures the
"gist" or main topic of the text.

e Low ROUGE-2 F1 (18.72%): This score is expectedly low and is not an indicator of failure. On the contrary, it
highlights the abstractive nature of the model. ROUGE-2 measures the overlap of two-word phrases (bigrams). An
abstractive model, by definition, rewrites and rephrases sentences, thus breaking the original bigram collocations. A
high ROUGE-2 score would imply a more extractive summary. This low score suggests the model is generating
novel sentence structures.

e High ROUGE-L F1 (42.99%): The ROUGE-L score measures the longest common subsequence (LCS), which is
a proxy for sentence-level structural similarity. This strong score (relative to ROUGE-2) indicates that while the
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model is rephrasing, it is correctly maintaining the overall logical flow and key clausal structures from the original
text.

C. Analysis of Precision vs. Recall
The bart _eval rouge summary.json file also provides precision and recall, which offer a critical insight:

High Recall (e.g., ROUGE-1: 72.10%): This demonstrates that mos¢ of the important words from the human-
written reference summaries are present in the model's generated summary. The model is comprehensive and does
not miss the main points.

Lower Precision (e.g., ROUGE-1: 39.55%): This means that the model's summary also includes many words that
are not in the reference summary. This is the hallmark of an abstractive model: it adds new conjunctions, adverbs,
and rephrased clauses to improve fluency and readability. These "new" words are penalized by the precision metric,
but they are essential for creating a human-like summary.

D. Score Distribution Analysis
The Box plot of the ROUGE F1 shows the distribution of scores across the entire test set.

ROUGE F1 distribution (per-example)

0.7 A

0.6

0.5 1

0.4

F1

0.2

0.1

1
ROUGE-1 ROUGE-2 ROUGE-L
Figure 2: Box plot of ROUGE F1-score distributions.

The box plot reveals that performance is not uniform. For ROUGE-1, the F1-score has a wide distribution, with a median
of 52.31% but some outliers as low as 28.57% and as high as 71.43%. This is expected, as some articles are inherently
more difficult to summarize than others. The ROUGE-L plot shows a similar healthy distribution. This analysis confirms
that the model is robust, with its median performance (the line in the box) being very close to its mean performance.

V. DISCUSSION AND FUTURE WORK

The results of this project successfully demonstrate the deployment of a state-of-the-art summarization model. However,
a critical discussion of the project's limitations and avenues for future work is necessary.
A. Limitations

1.

Factual Consistency: The primary limitation of al/l/ current abstractive models, including BART, is factual
hallucination. The model may generate summaries that are fluent and plausible but contain factual inaccuracies or
misrepresent relationships from the source text. The ROUGE score is incapable of detecting this. This is a significant,
open research problem, with active research into developing models and metrics for factuality [18].

Domain Mismatch: The facebook/bart-large-cnn model is an expert at summarizing news. If this system were
applied to a different domain (e.g., legal contracts, medical research papers, or poetry), its performance would drop
significantly.

Evaluation Metric Flaws: As discussed, ROUGE is a proxy for quality based on lexical overlap. It does not measure
semantic meaning (a summary could use synonyms and get a low ROUGE score) or human-judged qualities like
coherence and fluency.

Decoding Strategy: The infer.py script uses the default pipeline behavior, which is a greedy or basic beam search.
This is fast but may not always produce the most optimal or creative summary.
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B. Future Work
Based on these limitations, several extensions to this project could be pursued:

1. Human-in-the-Loop Evaluation: The most valuable next step would be to conduct a human evaluation. This would
involve presenting users with the source article and the generated summary and asking them to rate it on a 1-5 scale
for Fluency, Coherence, and Factual Accuracy.

2. Compare with Other SOTA Models: A comparative study could be performed by extending the backend to also
serve other pre-trained models, such as TS [11] or PEGASUS [12], and benchmarking their ROUGE scores and
speed.

3. Implement Advanced Decoding: The infer.py script could be modified to move beyond the default pipeline and
manually implement more advanced decoding strategies, such as nucleus sampling (top-p) or top-k sampling, to
potentially increase the diversity and quality of the generated summaries.

4. Factuality Correction: A more advanced system could implement a second-stage "fact-checking" module. This
module would take the generated summary and cross-reference its claims against the original source text to filter out
or correct hallucinations before presenting them to the user.

VI. CONCLUSION

This paper has presented the complete design, implementation, and evaluation of a full-stack, state-of-the-art abstractive
text summarization system. By leveraging the BART pre-trained Transformer model, we achieved strong quantitative
results on the CNN/Daily Mail dataset, with a ROUGE-1 F1 score of 50.61% and a ROUGE-L F1 score of 42.99%. Our
analysis of the precision/recall split and score distributions confirms the model's highly abstractive and robust nature.

More importantly, this research provides a practical blueprint for operationalizing such a model, using a high-
performance FastAPI backend for efficient, scalable model serving and a modern React frontend for an interactive user
experience. The project successfully bridges the gap between academic research in NLP and practical, real-world
application, demonstrating how complex Al can be integrated into usable tools to combat information overload.
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