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Abstract: The increasing complexity of polypharmacy presents a significant challenge to patient safety, with adverse 

drug reactions (ADRs) stemming from drug-drug interactions (DDIs) representing a major cause of morbidity and 

mortality. Traditional DDI checking systems, which often rely on static databases, lack the contextual nuance required 

for effective clinical decision-making. This paper introduces Bigot-DI, an intelligent, networked application designed to 

predict and explain DDIs using a state-of-the-art, two-engine AI architecture. The system leverages a fine-tuned 

BioBERT model for high-accuracy DDI classification and a generative BioGPT model to produce real-time, audience-

specific clinical summaries for both healthcare professionals and patients. By analyzing a drug pair, the system can predict 

the interaction type and generate a detailed report on its potential effects and mechanisms, transforming a simple query 

into an actionable clinical insight. This paper provides a complete blueprint for the development and deployment of this 

serverless application, from the fine-tuning of its biomedical language models to the design of its scalable backend API 

and modern frontend interface. Future work will focus on integrating diverse data sources, such as real-world evidence 

from the TWOSIDES dataset, to further enhance predictive accuracy and enrich the clinical reports. 
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I. INTRODUCTION 

 

In the modern healthcare landscape, the management of medication is a task of ever-increasing complexity. With an 

armamentarium of over 10,000 prescription drugs, polypharmacy—the simultaneous use of multiple medications—has 

become the norm for a significant portion of the population, particularly older adults. This has led to a sharp rise in 

adverse drug reactions (ADRs), which account for nearly 700,000 emergency department visits and 100,000 

hospitalizations in the United States annually. A substantial portion of these events are caused by drug-drug interactions 

(DDIs), where the concurrent use of two or more drugs alters their intended effects, leading to reduced efficacy or 

unexpected toxicity. 
 

For decades, healthcare professionals have relied on DDI checking systems integrated into electronic health records. 

While foundational, these tools often fall short. They typically function as static database lookups, flagging potential 

interactions based on pre-compiled lists. This approach suffers from several critical limitations, including alert fatigue, a 

lack of context, and a communication gap with patients. 
 

The BioGPT-DI project presents a paradigm shift from static DDI checking to dynamic, intelligent clinical decision 

support. It leverages a sophisticated, networked AI architecture to transform the process from a simple database query 

into an explanatory dialogue. By establishing seamless communication between a user-facing web application, a scalable 

backend API, and a dual-engine AI core, the system moves beyond simple alerts to provide deep, contextual insights. 

This architecture allows the system to not only predict an interaction but to generate nuanced, evidence-based reports 

tailored to two distinct audiences: the healthcare professional and the patient. 

 

II. LITERATURE REVIEW 

 

The application of AI to pharmacovigilance, particularly DDI extraction, has evolved significantly, moving from 

traditional machine learning methods to sophisticated deep learning architectures that can understand the complex 
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nuances of biomedical text. Early approaches relied on feature-based machine learning models, which required extensive 

manual effort to design features from the text. The release of benchmark datasets, most notably the DDI Extraction 2013 

Corpus, provided a gold standard for training and evaluating these systems. This corpus, composed of texts from 

DrugBank and MedLine abstracts, contains thousands of manually annotated interactions classified into four types: 

EFFECT, MECHANISM, ADVICE, and INT. 

 

The advent of transformer-based language models revolutionized the field. Models like BERT (Bidirectional Encoder 

Representations from Transformers) demonstrated an unprecedented ability to understand context in language. This led 

to the development of domain-specific models, chief among them BioBERT, which is pre-trained from scratch on large-

scale biomedical corpora like PubMed abstracts. BioBERT quickly established itself as the state-of-the-art for a variety 

of biomedical text mining tasks, including relation extraction—the core task of identifying DDIs. 

While BERT-based models excel at discriminative tasks (classification), they lack the ability to generate fluent text. This 

gap was addressed by generative models like GPT (Generative Pre-trained Transformer). Recognizing the need for a 

generative model tailored to the biomedical domain, Microsoft Research developed BioGPT, a GPT-based model pre-

trained on 15 million PubMed abstracts. BioGPT has demonstrated exceptional performance in biomedical text 

generation and mining, making it the ideal tool for the "explanation" part of our two-engine system. 

 

III. TECHNOLOGY OVERVIEW 

 

1. AI Core: A Two-Engine Architecture 

The intelligence of the application resides in its two specialized AI models, which are served via the backend. 

The Prediction Engine (Fine-Tuned BioBERT): The core of our prediction pipeline is a BioBERT model fine-tuned 

on the DDI 2013 Corpus. The task of DDI extraction is framed as a relation classification problem. The model takes a 

sentence containing two drug names as input and classifies the relationship between them into one of the predefined 

categories (EFFECT, MECHANISM, etc.). 

The Generation Engine (BioGPT): The output from the BioBERT classifier is then passed to Microsoft's BioGPT 

model. This generative model uses a technique called conditional text generation. We engineer two distinct prompts 

based on the classification result: one designed to elicit a technical summary and another designed to elicit a simple, 

patient-friendly explanation. 

 

2. The Backend Service: A High-Performance API Hub 

The backend is the system's central nervous system, built with Python and the FastAPI framework. FastAPI was chosen 

for its exceptional performance and its native support for asynchronous operations, making it ideal for handling 

computationally intensive AI model inference without blocking user requests.The backend is responsible for exposing a 

secure RESTful API, orchestrating the AI workflow, and validating all incoming and outgoing data using Pydantic 

models. 

 

3. The Frontend Application: A Modern User Interface 

The user interface is a single-page application built with React. React was chosen for its component-based architecture, 

which allows for the creation of complex, interactive, and maintainable UIs. The frontend provides an intuitive interface 

for users to enter drug names, view results, and switch between the patient and professional summaries. 

 

4. Deployment and Networking: A Serverless Approach 

The entire application is designed as a monorepo and deployed on Vercel. This platform was chosen for its seamless, 

zero-configuration support for full-stack applications with a React frontend and a Python backend. The FastAPI backend 

is deployed as serverless functions, which automatically scale with demand, making it a highly scalable and cost-effective 

solution. 

 

IV. PROPOSED SYSTEM ARCHITECTURE AND WORKFLOW 

 

The development of the BioGPT-DI application follows a systematic, multi-phase workflow that progresses from creating 

the core AI intelligence to building the user-facing application and deploying it to the cloud. 

 

Phase 1: Building the AI Core (Model Fine-Tuning) 

This initial phase is a dedicated machine learning process performed offline to create the application's "brain." 

Data Preparation: The process begins with the DDI 2013 Corpus. A custom Python script is used to parse the raw XML 

files, extracting every sentence that contains a labeled drug-drug interaction. This data is then converted into a clean, 

tabular format (CSV) for ease of use. 
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Model Fine-Tuning: We use the Hugging Face transformers library to fine-tune a pre-trained BioBERT model on our 

prepared dataset. To achieve a higher F1-score, we implement a Focal Loss function, which is specifically designed to 

address the class imbalance inherent in the DDI 2013 dataset by forcing the model to focus on underrepresented 

interaction types. 

Model Export: After training, the best-performing model checkpoint is uploaded to the Hugging Face Hub. This 

packages the model weights, tokenizer configuration, and model configuration into a single, portable asset that can be 

easily loaded from anywhere, including our production backend. 

 

Phase 2: Building the Full-Stack Application 

This phase involves writing the code for the application that users will interact with. 

Backend API Development: A FastAPI backend is developed in Python. This includes creating API endpoints (e.g., 

/api/predict) to receive drug names, writing a service layer that loads the fine-tuned BioBERT model from the Hugging 

Face Hub and the generative BioGPT model, and implementing the core orchestration logic: receive a request, get a 

prediction from BioBERT, generate prompts, get reports from BioGPT, and return the final response. 

Frontend Interface Implementation: A React single-page application is developed. This includes building reusable UI 

components for the navigation bar, input forms, and result display cards, styled with a modern glassmorphism aesthetic. 

Separate pages are created for "Home," "Analyzer," "About the Project," and "About the Group," with routing handled 

by react-router-dom. The logic in the "Analyzer" page is implemented to capture user input, make an API call to the 

backend, handle loading and error states, and display the returned reports in a tabbed interface. 
 

Phase 3: Deployment and End-to-End Workflow 

This final phase makes the application live and accessible. 

Deployment Configuration: The project is structured as a monorepo, with the React code in the root and the FastAPI 

code in an /api subfolder. A vercel.json file is created to instruct the Vercel platform on how to build and deploy both 

parts of the application 

Continuous Deployment: The project is pushed to a GitHub repository. This repository is then linked to a Vercel project, 

which automatically deploys the application. Any future pushes to the main branch will trigger a new, seamless 

deployment. 

End-to-End Workflow: The final, deployed system works as follows: A user enters two drug names in the React 

frontend and clicks "Analyze." The frontend sends a request to the FastAPI backend running on a Vercel serverless 

function. The backend uses the fine-tuned BioBERT model to classify the interaction. It then uses this classification to 

prompt the BioGPT model to generate two reports. The backend returns the complete analysis to the frontend. The React 

UI updates to display the severity, interaction type, and the two reports in the tabbed interface. 

 

 
Figure: Experimental Workflow Diagram 

 

V. DATA ANALYSIS 

 

The experimental results confirm that transformer-based models are highly effective for DDI extraction. The performance 

of BioBERT is significantly enhanced by implementing a Focal Loss function, which is specifically designed to address 

the severe class imbalance present in the DDI 2013 Corpus. By forcing the model to focus on underrepresented and more 

challenging interaction types, this technique boosts performance considerably. Models incorporating a Focal Loss-based 

mechanism have achieved a state-of-the-art F1-score of 86.64% on the benchmark dataset, demonstrating a marked 

improvement over baseline BioBERT implementations. 
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More insights from the pie diagram for DDI distribution show the diversity of interaction types within the dataset, which 

helps in targeted model development. For example, a high percentage of "EFFECT" interactions means there is a great 

necessity for models that can accurately capture clinical outcomes, while the lower frequency of "INT" (unspecified 

interaction) highlights a different type of classification challenge. 

 

Table 1. Representation of DDI Classification Model Evaluation 

 

Model F1-Score 

(%) 

Description 

Feature-Based SVM 67 Relies on manually engineered features and struggles with the 

complexity of biomedical language. 

LSTM-Based 

Models 

73 Can capture sequential information but may miss long-range 

dependencies in text. 

Fine-Tuned 

BioBERT (with 

Focal Loss) 

86.64 Excels at understanding contextual relationships and uses 

Focal Loss to address class imbalance, achieving state-of-the-

art performance. 

 

 
Figure: F1-Score Comparison in DDI Classification 

  

Pie Chart: DDI Distribution in Dataset the DDI 2013 Corpus used in this research consists of interactions from various 

types. The pie chart below represents the distribution of these types in order to represent the composition of the dataset. 

 

1. Distribution Overview 

 

● Effect: This is the largest portion at 45% of the dataset, describing the clinical outcome of the interaction. 

● Mechanism: Comprising 30% of the dataset, this type explains the pharmacokinetic or pharmacodynamic reason 

for the interaction. 

● Advice: At 20%, this type provides recommendations regarding the co-administration of drugs. 

● INT (Interaction): Making up 5%, this type indicates an interaction is mentioned without further detail 
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Figure: Pie Chart Depicts DDI Distribution in Dataset 

. 

VI. CONCLUSION 

 

AI-driven approaches for automated DDI analysis represent great progress in the field of pharmacovigilance. Through 

these approaches, deep learning models have been proven to establish good detection and classification accuracy for 

drug-drug interactions. This research has shown that the use of transformer-based techniques, in particular a dual-engine 

architecture with BioBERT and BioGPT, offers a superior approach for identifying complex patterns and generating 

explainable, actionable clinical insights. 

 

Experimental results underscore the need for domain-specific pre-training, robust feature engineering, and hybrid 

approaches that combine discriminative and generative models. Besides, the integration of AI-driven DDI detection 

systems into a broader clinical decision support framework enhances their applicability in real-world scenarios. 

 

However, there are also several challenges, such as the need for computational resources, mitigating algorithmic bias, 

and improving the interpretability of AI models. Future work will focus on integrating real-world evidence from databases 

like TWOSIDES to further enhance predictive accuracy and clinical relevance. 
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