
ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 10, October 2025

DOI: 10.17148/IJIREEICE.2025.131018

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 124

A Multiple Temperature-Control And

Alarm System, Based On LM35 Sensor,

Using FPGAs and VHDL

Dr Evangelos I. Dimitriadis1, Leonidas Dimitriadis2

Department of Computer, Informatics and Telecommunications Engineering, International Hellenic University,

 End of Magnisias Str, 62124 Serres Greece1

Undergraduate Student, Department of Information and Electronic Engineering, International Hellenic University,

57400, Sindos Thessaloniki, Greece2

Abstract: A multiple temperature-control system, based on LM35 sensor, FPGAs and VHDL, is presented here. The

system is capable of providing a series of controls and subsequently activate respective alarm systems. It can simulta-

neously monitor three basic temperature-related parameters. The first is temperature range values of specific area or a

human. Blue, green and red LEDs light up, to present temperature lowering below lower limit value, temperature re-

maining within set values or exceeding upper set value, respectively. If temperature is out of limits buzzer also sounds.

Second basic parameter monitored here, is temperature rising or lowering rate within specific time set values and sub-

sequent activation of center yellow LED and half right of board LEDs or center white LED and half left of board LEDs,

respectively. Finally the third basic parameter monitored with our system, is temperature remaining above upper criti-

cal set value or below lower critical set value for a specific time period, thus activating breadboard’s right yellow or

white LEDs, respectively. LM35 temperature sensor used here and its analog voltage values act as input to FPGA’s

ADC unit and converted temperature values are presented to seven-segment displays. All LED systems activated here,

correspond to related external control systems which are activated on a case-by-case basis. The system uses DE10-Lite

FPGA board and taking into account that specific time periods, as well as upper and lower temperature limits and tem-

perature rising or lowering rates can be set to a variety of values, gives our system the ability of implementation in a

wide range of applications such as patient, room, laboratory, industrial or external environment monitoring.

Keywords: LM35 sensor, Temperature, FPGA, VHDL, Buzzer, LEDs.

I. INTRODUCTION

FPGAs provide the main advantage of combining software and hardware, thus having the ability of hardware pro-

gramming for a series of applications. Languages used for FPGAs’ programing are VHDL and Verilog and VHDL is

the one used in our work.

An interesting application field of FPGAs is temperature monitoring and controlling, incorporating also various alarm

systems. (1-5) Presented works deal with topics such as monitoring temperature in FPGA based SoCs, FPGA based real-

time remote temperature measurement system, FPGA based temperature control and monitoring system for X-ray

measurement instrument, FPGA Alarm System Based on Multi Temperature Sensor and Temperature Sensors in FPGA

Based On Digital Nonlinear Oscillators for Improved Sensitivity. All the above works use complicated systems and

some of them also expensive, but the problem of presenting a simple system, capable of providing monitoring, measur-

ing and controlling basic temperature-related parameters, is not clearly solved. Our system uses the cheap and reliable

temperature sensor LM35, thus providing a simple solution for monitoring and controlling various temperature parame-

ters in conjunction with the activation of specific alarm systems. This work presents a system dealing with an important

triple of temperature measurements and controls. Temperature range values, temperature rise and lowering rates within

specific time intervals and temperature overcoming set values or lowering below set values for a number of times,

within specific time periods. Another benefit of our system is that it can work with a variety of temperature sensors

which provide an analog output and also its cost is remarkably low.

II. DESIGN OVERVIEW AND OPERATION OF THE SYSTEM

Figure1 presents device overview and operational units of our system, using FPGA DE10-Lite board, while Figure 2

presents circuit diagram of the system.

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 10, October 2025

DOI: 10.17148/IJIREEICE.2025.131018

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 125

It is obvious from both of the above figures that our system, except from DE10-Lite FPGA board, contains also some

basic circuit parts. We can see three LED systems. First is temperature monitoring system, second is temperature in-

crease or decrease rate monitoring unit and third is temperature above or below critical values counting-monitoring

system. We can also observe buzzer alarm system and LM35 temperature sensor unit. DE10-Lite FPGA board used

here offers, its seven-segment displays for presenting input LM35 sensor voltage values converted to input temperature

in Celsius degrees and board LEDs mentioned above. Figure 3 presents all the above units.

Time is the other input value used here and it is provided by FPGA’s clock.

Figure 1: Device overview and operational units of our system.

Our multiple temperature-control system starts operating as soon as power supply +5V is applied to all circuits and the

VHDL program is sent via USB Blaster interface, to FPGA chip. Input values from both LM35 unit and FPGA’s clock

are entered in our system. Analog to digital converter (ADC) of DE10-Lite proceeds to conversion and finally input

voltage values are given their calculated corresponding Celsius degree values, which are finally presented in seven-

segment displays of the FPGA board.

Figure 2: Circuit diagram of our system

Simultaneously three basic processes start running. At first, temperature monitoring and controlling unit receives LM35

sensor’s input values and checks whether temperature values are within or out of set limits. We chose a lower tempera-

ture limit value of 18oC and an upper limit of 30oC. If input temperature values are below lower limit then blue external

LED lights up and buzzer starts sounding. In case that temperature value is within set limits then green external LED

lights up and buzzer stops sounding. Finally if temperature value is above upper set limit then red external LED lights

up and buzzer starts sounding again. The above external LEDs are connected to I/O pins of the FPGA board and act as

outputs for our system.

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 10, October 2025

DOI: 10.17148/IJIREEICE.2025.131018

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 126

The second unit that is activated upon system’s operation is temperature increase or decrease rate monitoring unit. This

unit uses both LM35 and time input values. Its role is to monitor the possibility of a rapid temperature rising or

lowering rate. If increase temperature rate overcomes set value then yellow LED of the unit lights up with simultaneous

lighting of half right board LEDs. In case that decrease temperature rate

Figure 3: The multiple temperature-control system of this work.

overcomes set value then white LED lights up with simultaneous lighting of half left board LEDs. It must be mentioned

that specific time periods and increase or decrease temperature rates are set by the programmer. This gives our system

the ability to monitor a human or an environment for a variety of time periods. In this work in order to obtain fast re-

sults we observe increase or decrease temperature rates from first 30sec to 60sec time with a temperature value differ-

ence of 3oC. We must mention that all LED systems, as well as buzzer unit of this work, play the role of outputs which

could activate corresponding control systems.

Another important fact of our system’s design is that it receives input voltage values periodically, ensuring continuous

temperature change monitoring.

The third unit that is activated upon system’s operation is the one that observes

Figure 4a: The multiple temperature-control system of this work, operating. Temperature is below lower set limit and

temperature rate decrease exceeds set value.

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 10, October 2025

DOI: 10.17148/IJIREEICE.2025.131018

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 127

whether the monitored environment remained for a specific time period from 120sec to 240sec, within temperature

values below lower set value or above upper set value.

Essentially we are using a counter unit which counts with clock pulses, the times that input temperature values are

found to be above upper set limit or below lower set limit. In the first case, at the right of the circuit, yellow LED lights

up, while in second case white LED lights up. We must mention that, for simplicity reasons, we set the number of

counted times exceeding upper or lower set temperature values, equal to 3, meaning that three clock pulses with simul-

taneous exceeding temperature values are enough to cause white or yellow LEDs of this unit to light up.

Figure 4b: The multiple temperature-control system of this work, operating. Temperature is within programmer set

upper and lower values.

All external LEDs use an NPN 2N2222 transistor as a switch, with its base electrode connected to FPGA’s I/O pins

which are our system’s outputs.

Figures 4a, 4b, 4c and 5 present different phases of our system’s operations, mentioned above. Figure 4a shows that

temperature is below lower set limit and temperature rate

 decrease exceeds set value. This results to blue LED lighting at the left of the circuit showing that temperature value is

below lower set limit. It can also be seen that due to temperature rate decrease exceeding set value, both left half of

board LEDs and center white LED light up, as we mentioned above concerning our system’s operation.

Figure 4b presents temperature being between programmer set upper (30oC) and lower (18oC) values and consequently

green LED lights up.

Figure 4c shows that measured temperature exceeds upper set value, so red LED lights up.

Figure 4c: The multiple temperature-control system of this work, operating. Measured temperature exceeds upper set

value.

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 10, October 2025

DOI: 10.17148/IJIREEICE.2025.131018

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 128

In Figure 5 we observe that all three monitoring units of our system, are in operation mode and they have been affected

by temperature changes. At first, temperature value is above upper set limit causing red LED lighting. Second observa-

tion shows that temperature decrease rate exceeds set value, leading to both center white LED and half left of board

LEDs lighting. Initial temperature value of 49.9oC shown in Figure 4c, reduced to a value of 31.5oC presented in Figure

5, but decrease rate exceeded the value of 3oC in a time period of 30sec, set in VHDL program. Third observation

makes obvious that temperature values remained higher than upper set limit, for specific time set period extending from

120sec to 240sec, leading to yellow LED lighting at the right of breadboard.

Figure 5: The multiple temperature-control system of this work, operating. Temperature value is above upper set limit

and temperature rate decrease exceeds set value. Temperature values remained higher than upper set limit for specific

time set period.

III. PROGRAMING THE SYSTEM

We used Quartus Prime Lite Edition 21.1.1 to create the VHDL programs of our system. It must be mentioned here that

before proceeding with the VHDL programming of our system, we had to set a series of parameters controlling the op-

eration of DE10-Lite FPGA’s Analog to Digital Converter (ADC). This converter plays a very important role in the

whole system operation, since it converts the analogue input voltage from LM35 temperature sensor connected to

FPGA board to digital values, acting as main input of the system. The files created by the above ADC parameters set-

ting are imported into the final project of our system.

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 10, October 2025

DOI: 10.17148/IJIREEICE.2025.131018

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 129

Figure 6: Flowchart diagram, presenting main functions-processes of our system.

A flowchart diagram, presenting main functions of our system is presented in Figure 6, while the APPENDIX contains

the whole VHDL program.

It is clear that the system basically operates four functions. All of them use processes in VHDL programming language.

The first function playing definitive role in system operation, uses analog input voltages provided from LM35 tempera-

ture sensor, shown in Figure2, as main input, convert them to digital values and present the final result in seven-

segment displays as temperature value in Celsius degrees, with an accuracy of one decimal place. These processes are

running as long as the system is ON. Calculated values for input sensor voltage values are used in many other process-

es, in order to activate control systems and external or internal LEDs. Second function includes such processes which

activate temperature monitoring LED systems, in order to present the scale of monitored temperature by lighting corre-

sponding LED. In addition to this process we also programmed external buzzer system to sound, whenever temperature

is lower than set limit of 18oC or higher than upper set limit of 30oC. Needless to say that our program gives the ability

of setting temperature limits according to the application that our system is used.

Third function of our system deals with monitoring increase or decrease rate of temperature. This means that program-

mer must set a specific difference between two LM35 sensor input voltages Vr1 and Vr2 which correspond to specific

time values in seconds. Vr1 is the input voltage value at 30sec and Vr2 is the input voltage value at 60sec. Time values

can be set by the programmer depending on the application that our system is used. Taking into account that Vr =10

corresponds to 0.1V input and is converted to a temperature value of 1oC and Vr =100 corresponds to 1V and is con-

verted to a temperature value of 10oC, as we present in the VHDL code in the APPENDIX, we can conclude that (Vr2-

Vr1)/(60-30) >1 gives an increase rate of 3oC in 30sec time, while (Vr1-Vr2)/(60-30) >1 gives a decrease rate of 3oC in

30sec time. In the first case center yellow LED is programmed to light up with simultaneous right half of board LEDs

lighting, while in the second case both center white LED and left half of board LEDs light up.

Fourth basic function of our system controls the unit responsible for monitoring and counting in a specific time period,

the number of times that input temperature is lower than minimum set value or higher than maximum set value. It uses

a counter system controlled by FPGA’s board clock, so it is the programmer who decides the critical number of times

to be exceeded in order to activate corresponding LED. As we mentioned earlier, external white LED, at the right of

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 10, October 2025

DOI: 10.17148/IJIREEICE.2025.131018

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 130

breadboard, will be activated if input temperature remains lower than minimum set value for critical clock times set by

programmer, while yellow LED will light up in case that temperature values remain higher than maximum set value.

IV. CONCLUSION

A novel FPGA-based system is presented here, which manages to monitor temperature values of a given space or hu-

man and activate corresponding control systems, in our case internal or external LEDs and buzzer system. The system

uses the LM35 temperature sensor and it is capable of simultaneous monitoring three basic temperature-related proce-

dures. Temperature range of the monitored object, as well as temperature increase or decrease rate in a specific time

period and temperature remaining below lower set value or above upper set value for a specific time period. Time peri-

ods, lower and upper temperature values and increase or decrease rates are simultaneously monitored and can be set to

values that each application requires. This gives to our system the advantage of implementation to a variety of applica-

tions. The system can work with all commercial temperature sensors that provide an analog output. Our system is easy

to be manufactured, providing also the benefit of low cost.

REFERENCES

[1]. S. Velusamy; W. Huang; J. Lach; M. Stan; K. Skadron, "Monitoring temperature in FPGA based SoCs", Interna-

tional Conference on Computer Design, October 2005, IEEE,ISBN:0-7695-2451-6 DOI: 10.1109/ICCD.2005.78

[2]. T. N. Kumar, H.F. Mohamed, M. Naleem, V. Ganeish, "An FPGA based real-time remote temperature meas-

urement system", International Conference on Electronic Devices, Systems and Applications, 2010,

DOI:10.1109/ICEDSA.2010.5503070

[3]. K. Mahant, A.V. Patel, A.Val, R. Goswami, "FPGA based temperature control and monitoring system for X-ray

measurement instrument", IEEE Conference (TENCON), 2016, DOI:10.1109/TENCON.2016.7848651

[4]. Y. Xu, "FPGA Alarm System Based on Multi Temperature Sensor", International Journal of Online and Bio-

medical Engineering (iJOE), 13(05), pp. 109–121, 2017, DOI: https://doi.org/10.3991/ijoe.v13i05.7053

[5]. R. A. Téllez, M. G.-Bosque, G. D.-Señorans, S. Celma, "Temperature Sensors in FPGA Based On Digital Non-

linear Oscillators for Improved Sensitivity", 21st International Conference on Synthesis, Modeling, Analysis and

Simulation Methods and Applications to Circuits Design (SMACD), July 2025,

DOI:10.1109/SMACD65553.2025.11092156

APPENDIX

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use ieee.std_logic_signed.ALL;

use ieee.std_logic_unsigned.ALL;

entity DE10_Lite_ADC_LM35 is

generic(ClockFrequencyHz : integer:=50000000);

port

(

rst : in std_logic;

nRst : in std_logic; -- Negative reset

Seconds : inout integer;

Ticks : inout integer;

led1: out std_logic;--1-5(0-4) LEDs light up with large rate of temperature increase

led2: out std_logic;

led3: out std_logic;

led4: out std_logic;

led5: out std_logic;

led6: out std_logic;--6-10(5-9) LEDs light up with large rate of temperature decrease

led7: out std_logic;

led8: out std_logic;

led9: out std_logic;

led10: out std_logic;

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 10, October 2025

DOI: 10.17148/IJIREEICE.2025.131018

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 131

led_blue: buffer std_logic; --temperature below lower limit

led_red: buffer std_logic;--temperature above upper limit

led_green: buffer std_logic;--normal

led_blue_out: out std_logic;--temperature below lower limit

led_red_out: out std_logic;--temperature above upper limit

led_green_out: out std_logic;--normal

buzzer:out std_logic; --rings on temperature higher or lower than critical limits

Vr: buffer integer;

d2bbuf :buffer integer range 0 to 9;

d1bbuf :buffer integer range 0 to 9;

d0bbuf :buffer integer range 0 to 9;

SW0 : in std_logic;

yellow_led_alarm_temp_rate: out std_logic;--temperature increase rate out of limit

white_led_alarm_temp_rate: out std_logic;--temperature decrease rate out of limit

yellow_led_alarm_times_temp_higher: out std_logic;--temperature higher than upper limit value many times (out of

limit)

white_led_alarm_times_temp_lower: out std_logic;--temperature lower than lower limit value many times (out of limit)

yellow_led_alarm_temp_rate_buff: buffer std_logic;----temperature increase rate out of limit

white_led_alarm_temp_rate_buff: buffer std_logic;--temperature decrease rate out of limit

yellow_led_alarm_times_temp_higher_buff: buffer std_logic;--temperature higher than upper limit value many times

(out of limit)

white_led_alarm_times_temp_lower_buff: buffer std_logic;--temperature lower than lower limit value many times (out

of limit)

-- Clocks

ADC_CLK_10: in std_logic;

MAX10_CLK1_50: in std_logic;

MAX10_CLK2_50: in std_logic;

-- KEYs

KEY: in std_logic_vector(1 downto 0);

-- HEX

HEX0: out std_logic_vector(7 downto 0);

HEX1: out std_logic_vector(7 downto 0);

HEX2: out std_logic_vector(7 downto 0);

ARDUINO_IO: inout std_logic_vector(15 downto 0);

ARDUINO_RESET_N: inout std_logic);

-- GPIO

--GPIO: inout std_logic_vector(35 downto 0));

end entity;

architecture DE10_Lite_ADC_LM35_Arch of DE10_Lite_ADC_LM35 is

-- Analog to Digital Converter IP core

component myADC is

port

(

clk_clk: in std_logic := 'X';

modular_adc_0_command_valid: in std_logic := 'X';

modular_adc_0_command_channel: in std_logic_vector(4 downto 0) := (others => 'X');

modular_adc_0_command_startofpacket: in std_logic := 'X';

modular_adc_0_command_endofpacket: in std_logic := 'X';

modular_adc_0_command_ready: out std_logic;

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 10, October 2025

DOI: 10.17148/IJIREEICE.2025.131018

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 132

modular_adc_0_response_valid: out std_logic;

modular_adc_0_response_channel: out std_logic_vector(4 downto 0);

modular_adc_0_response_data: out std_logic_vector(11 downto 0);

modular_adc_0_response_startofpacket: out std_logic;

modular_adc_0_response_endofpacket: out std_logic;

reset_reset_n: in std_logic

);

end component myADC;

signal modular_adc_0_command_valid: std_logic;

signal modular_adc_0_command_channel: std_logic_vector(4 downto 0);

signal modular_adc_0_command_startofpacket: std_logic;

signal modular_adc_0_command_endofpacket: std_logic;

signal modular_adc_0_command_ready: std_logic;

signal modular_adc_0_response_valid: std_logic;

signal modular_adc_0_response_channel: std_logic_vector(4 downto 0);

signal modular_adc_0_response_data: std_logic_vector(11 downto 0);

signal modular_adc_0_response_startofpacket: std_logic;

signal modular_adc_0_response_endofpacket: std_logic;

signal clk_clk: std_logic;

signal reset_reset_n: std_logic;

type state_machines is (sm0,sm1, sm2, sm3, sm4);

signal sm: state_machines;

-- signals to store conversion results

signal ADCIN1,ADCIN4, ADCIN3,ADCIN2: std_logic_vector(11 downto 0);

signal AD1,AD4, AD3,AD2: std_logic_vector(11 downto 0);

-- signal for BCD digits

signal digit2b, digit1b, digit0b: std_logic_vector(3 downto 0);

signal digit2, digit1, digit0: std_logic_vector(3 downto 0);

-- signal to determine how fast the

-- 7-seg displays will be updated

signal cnt: integer;

signal state_LED_right: std_logic;

signal state_LED_left: std_logic;

signal state_Vr: integer;

signal xmax_maximum: integer;

signal xmin_minimum: integer;

begin

-- ADC port map

adc1: myADC port map

(

modular_adc_0_command_valid => modular_adc_0_command_valid,

modular_adc_0_command_channel => modular_adc_0_command_channel,

modular_adc_0_command_startofpacket => modular_adc_0_command_startofpacket,

modular_adc_0_command_endofpacket => modular_adc_0_command_endofpacket,

modular_adc_0_command_ready => modular_adc_0_command_ready,

modular_adc_0_response_valid => modular_adc_0_response_valid,

modular_adc_0_response_channel => modular_adc_0_response_channel,

modular_adc_0_response_data => modular_adc_0_response_data,

modular_adc_0_response_startofpacket => modular_adc_0_response_startofpacket,

modular_adc_0_response_endofpacket => modular_adc_0_response_endofpacket,

clk_clk => clk_clk,

reset_reset_n => reset_reset_n

);

clk_clk <= MAX10_CLK1_50;

reset_reset_n <= KEY(0);

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 10, October 2025

DOI: 10.17148/IJIREEICE.2025.131018

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 133

-- process for reading new samples

p1: process(reset_reset_n, clk_clk)

begin

if reset_reset_n = '0' then

 sm <= sm0;

elsif rising_edge(clk_clk) then

 case sm is

 when sm0 =>

 sm <= sm1;

 modular_adc_0_command_valid <= '1';

 modular_adc_0_command_channel <= "00001";

 when sm1 =>

 if modular_adc_0_response_valid = '1' then

 modular_adc_0_command_channel <= "00010";

 ADCIN4 <= modular_adc_0_response_data;

 sm <= sm2;

 end if;

 when sm2 =>

 if modular_adc_0_response_valid = '1' then

 modular_adc_0_command_channel <= "00001";

 modular_adc_0_command_channel <= "00011";

 ADCIN1 <= modular_adc_0_response_data;

 sm <= sm1;

 sm <= sm3;

 end if;

 when sm3 =>

 if modular_adc_0_response_valid = '1' then

 modular_adc_0_command_channel <= "00100";

 ADCIN2 <= modular_adc_0_response_data;

 sm <= sm4;

 end if;

 when sm4 =>

 if modular_adc_0_response_valid = '1' then

 modular_adc_0_command_channel <= "00001";

 ADCIN3 <= modular_adc_0_response_data;

 sm <= sm1;

 end if;

 when others =>

 end case;

end if;

end process;

-- process for conversion from binary to BCD (analog input voltage)

p3: process(AD2,d2bbuf,d1bbuf,d0bbuf)

variable vin: integer;

variable d2, d1, d0: integer;

begin

vin := to_integer(unsigned(std_logic_vector(to_unsigned(to_integer(unsigned(AD2)) * 500,

32))(31 downto 12)));

d2 := vin / 100;

d1 := vin mod 100 / 10;

d0 := ((vin mod 100) mod 10);

digit2b <= std_logic_vector(to_unsigned(d2, 4));

digit1b <= std_logic_vector(to_unsigned(d1, 4));

digit0b <= std_logic_vector(to_unsigned(d0, 4));

d2bbuf<= d2;

d1bbuf<= d1;

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 10, October 2025

DOI: 10.17148/IJIREEICE.2025.131018

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 134

d0bbuf<= d0;

end process;

state_Vr<= (d2bbuf*100)+(d1bbuf*10)+(d0bbuf);

Vr<= state_Vr;

-- determine how fast the 7-seg displays will be updated

p4: process(reset_reset_n, clk_clk)

begin

if reset_reset_n = '0' then

cnt <= 0;

elsif rising_edge(clk_clk) then

if cnt < 20_000_000 then

cnt <= cnt + 1;

else

cnt <= 0;

AD1 <= ADCIN1;

AD2 <= ADCIN2;

AD3 <= ADCIN3;

AD4 <= ADCIN4;

end if;

end if;

end process;

--time-seconds

process(MAX10_CLK1_50) is

 begin

 if rising_edge(MAX10_CLK1_50) then --ισοδύναμο του IF CLK'EVENT AND CLK='1'

 ------ If the negative reset signal is active

 if nRst = '0' then

 Ticks <= 0;

 Seconds <= 0;

 else

 -- True once every second

 if Ticks = ClockFrequencyHz - 1 then

 Ticks <= 0;

 Seconds <= Seconds + 1;

 else

 Ticks <= Ticks + 1;

 end if;

 end if;

 end if;

 end process;

process (Vr,seconds,MAX10_CLK1_50, yellow_led_alarm_temp_rate_buff,

white_led_alarm_temp_rate_buff, yellow_led_alarm_times_temp_higher_buff,

white_led_alarm_times_temp_lower_buff, state_LED_right,state_LED_left,

xmax_maximum, xmin_minimum)

variable Vr1: integer;

variable Vr2:integer;

begin

IF seconds=30 THEN--50000000 Ticks= 1sec and Vr=10 corresponds to 0.1V input and 1oC and 100 to 1V and 10oC

Vr1:=Vr;

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 10, October 2025

DOI: 10.17148/IJIREEICE.2025.131018

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 135

end if;

IF seconds=60 THEN--50000000 Ticks= 1sec and Vr=10 corresponds to 0.1V input 1oC and 100 to 1V and 10oC

Vr2:=Vr;

end if;

IF ((Vr2-Vr1)/(60-30))>1 THEN --3oC increase in 30 seconds

yellow_led_alarm_temp_rate_buff<='1';

state_LED_right<='1';

else

yellow_led_alarm_temp_rate_buff<='0';

state_LED_right<='0';

end if;

IF ((Vr1-Vr2)/(60-30))>1 THEN --3oC decrease in 30 seconds

white_led_alarm_temp_rate_buff<='1';

state_LED_left<='1';

else

white_led_alarm_temp_rate_buff<='0';

state_LED_left<='0';

end if;

if MAX10_CLK1_50'event and MAX10_CLK1_50 = '1' then

IF ((seconds>=120 AND seconds<=240) AND Vr>300) THEN

xmax_maximum<=xmax_maximum+1;

else

xmax_maximum<=xmax_maximum;

end if;

end if;

IF (xmax_maximum>=3) THEN

yellow_led_alarm_times_temp_higher_buff<='1';

else

yellow_led_alarm_times_temp_higher_buff<='0';

end if;

if MAX10_CLK1_50'event and MAX10_CLK1_50 = '1' then

IF ((seconds>=120 AND seconds<=240) AND Vr<180) THEN

xmin_minimum<=xmin_minimum+1;

else

xmin_minimum<=xmin_minimum;

end if;

end if;

IF (xmin_minimum>=3) THEN

white_led_alarm_times_temp_lower_buff<='1';

else

white_led_alarm_times_temp_lower_buff<='0';

end if;

end process;

yellow_led_alarm_temp_rate<=yellow_led_alarm_temp_rate_buff;

white_led_alarm_temp_rate<=white_led_alarm_temp_rate_buff;

yellow_led_alarm_times_temp_higher<=yellow_led_alarm_times_temp_higher_buff;

white_led_alarm_times_temp_lower<=white_led_alarm_times_temp_lower_buff;

led1<=state_LED_right;

led2<=state_LED_right;

led3<=state_LED_right;

led4<=state_LED_right;

led5<=state_LED_right;

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 10, October 2025

DOI: 10.17148/IJIREEICE.2025.131018

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 136

led6<=state_LED_left;

led7<=state_LED_left;

led8<=state_LED_left;

led9<=state_LED_left;

led10<=state_LED_left;

process (Vr, led_blue,led_red, led_green)

begin

IF Vr>300 THEN

led_red<='1';

else

led_red<='0';

end if;

IF Vr<180 THEN

led_blue<='1';

else

led_blue<='0';

end if;

IF Vr<=300 AND Vr>=180 THEN

led_green<='1';

else

led_green<='0';

end if;

end process;

led_blue_out<=led_blue;

led_red_out<=led_red;

led_green_out<=led_green;

 --critical pulses_per_minute value exceeded buzzer sounds

Process(MAX10_CLK1_50,Vr)

variable i : integer := 0;

BEGIN

IF (Vr>300) OR (Vr<180) THEN --temperature >30oC OR temperature<18oC buzzer sounds

if MAX10_CLK1_50'event and MAX10_CLK1_50 = '1' then

if i <= 50000000 then

i := i + 1;

buzzer <= '1';

elsif i > 50000000 and i < 100000000 then

i := i + 1;

buzzer <= '0';

elsif i = 100000000 then

i := 0;

end if;

end if;

end if;

end process;

process(SW0,digit2b,digit1b,digit0b)

begin

 IF SW0='0' THEN

 digit2 <= digit2b;--first digit of temperature (tens)

 digit1 <= digit1b;--second digit of temperature (units)

 digit0 <= digit0b;--third digit of temperature (10^-1)

 end if;

end process;

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 10, October 2025

DOI: 10.17148/IJIREEICE.2025.131018

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 137

 WITH digit2 SELECT

HEX2 <= "01000000" WHEN "0000", -- display 0

"11111001" WHEN "0001", -- display 1

"10100100" WHEN "0010", -- display 2

"10110000" WHEN "0011", -- display 3

"10011001" WHEN "0100", -- display 4

"10010010" WHEN "0101", -- display 5

"10000011" WHEN "0110", -- display 6

"11111000" WHEN "0111", -- display 7

"10000000" WHEN "1000", -- display 8

"10011000" WHEN "1001", -- display 9

"11111111" WHEN OTHERS; -- blank display

WITH digit1 SELECT

HEX1 <= "11000000" WHEN "0000", -- display 0

"01111001" WHEN "0001", -- display 1

"00100100" WHEN "0010", -- display 2

"00110000" WHEN "0011", -- display 3

"00011001" WHEN "0100", -- display 4

"00010010" WHEN "0101", -- display 5

"00000011" WHEN "0110", -- display 6

"01111000" WHEN "0111", -- display 7

"00000000" WHEN "1000", -- display 8

"00011000" WHEN "1001", -- display 9

"11111111" WHEN OTHERS; -- blank display

WITH digit0 SELECT

HEX0 <= "11000000" WHEN "0000", -- display 0

"11111001" WHEN "0001", -- display 1

"10100100" WHEN "0010", -- display 2

"10110000" WHEN "0011", -- display 3

"10011001" WHEN "0100", -- display 4

"10010010" WHEN "0101", -- display 5

"10000011" WHEN "0110", -- display 6

"11111000" WHEN "0111", -- display 7

"10000000" WHEN "1000", -- display 8

"10011000" WHEN "1001", -- display 9

"11111111" WHEN OTHERS; -- blank display

end architecture;

https://ijireeice.com/
https://ijireeice.com/

