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Abstract: Agriculture plays a critical role in global food security, yet crop diseases continue to cause significant eco- 

nomic losses worldwide. Traditional deep learning models, while achieving high accuracy in disease detection, face 

substantial limitations when deployed for real-time, in-field applications due to their computational complexity and large 

memory requirements. This research addresses these challenges by developing a lightweight, quantized model specifi- 

cally designed for edge device deployment. We propose applying model compression techniques through quantization 

on MobileNetV2, a lightweight neural network architecture, to create an efficient model suitable for resource-constrained 

environments. Our methodology involves comprehensive comparison of Post-Training Quantization (PTQ) and Dynamic 

Range Quantization (DRQ) techniques applied to rice leaf disease classification. The results demonstrate a significant 

reduction in model size from approximately 9 MB to 2.5 MB while maintaining acceptable accuracy levels. The DRQ 

model achieved 92.23% accuracy with an F1-score of 0.9212, compared to the original model’s 94% accuracy, repre- 

senting a minimal 1.77% accuracy trade-off for a 72% size reduction. These findings highlight the practical viability 

of quantized models for automated disease detection systems in precision agriculture, enabling real-time deployment on 

smartphones and embedded devices for farmers in remote locations. 

 

Keywords: Crop disease classification, edge computing, model quantization, MobileNetV2, precision agriculture, deep 

learning compression. 

 

I.      INTRODUCTION 

 

Agriculture remains the backbone of global food security, supporting billions of people worldwide and contributing sig- 

nificantly to economic development in many countries. However, plant diseases pose a persistent threat to crop produc- 

tivity, causing annual losses estimated at 20-40% of global crop production, translating to billions of dollars in economic 

impact [1]. Traditional disease identification methods rely heavily on expert knowledge and visual inspection, which are 

time-consuming, subjective, and often unavailable in remote agricultural areas. 

 

The advent of deep learning has revolutionized plant disease detection, with Convolutional Neural Networks (CNNs) 

achieving remarkable accuracy in identifying various crop diseases from digital images [2]. However, these high- 

performing models typically require substantial computational resources, large memory footprints, and significant power 

consumption, making them impractical for deployment on edge devices such as smartphones, tablets, or embedded sys- 

tems commonly used in agricultural settings. 

 

The challenge of deploying sophisticated AI models in resource-constrained environments has led to increased inter- est 

in model compression techniques. Edge computing in agriculture offers numerous advantages, including real-time 

processing, reduced dependency on internet connectivity, lower latency, and enhanced privacy for farmers’ data. How- 

ever, the computational limitations of edge devices necessitate the development of lightweight models that can maintain 

acceptable accuracy while operating within strict resource constraints. 

 

This research addresses the critical need for efficient crop disease classification models suitable for edge deployment. 

Our primary objective is to develop a highly efficient and accurate model for rice leaf disease classification by leveraging 

quantization techniques to significantly reduce model size and improve inference performance on edge devices. Specifi- 

cally, we aim to: (1) implement and compare different quantization approaches on a lightweight architecture, (2) analyze 

the trade-offs between model size, accuracy, and inference speed, and (3) demonstrate the practical viability of quantized 

models for real-world agricultural applications. 

 

The remainder of this paper is organized as follows: Section II presents a comprehensive literature review of existing 

approaches to plant disease detection and model compression techniques. Section III details our methodology, including 
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dataset description, model architecture, and quantization procedures. Section IV presents experimental results, followed 

by analysis and discussion in Section V. Finally, Section VI concludes the paper and outlines future research directions. 

 

II.     LITERATURE REVIEW 

 

2.1 Traditional Methods for Plant Disease Detection 

Early approaches to automated plant disease detection relied primarily on traditional computer vision techniques and 

handcrafted feature extraction methods. These systems typically employed color-based segmentation, texture analysis, 

and morphological operations to identify diseased regions in plant images [3]. While these methods provided 

interpretable results and required minimal computational resources, they struggled with complex backgrounds, varying 

lighting con- ditions, and the subtle visual differences between disease symptoms. 

Feature extraction techniques such as Local Binary Patterns (LBP), Histogram of Oriented Gradients (HOG), and 

Scale-Invariant Feature Transform (SIFT) were commonly employed in conjunction with traditional machine learning 

classifiers like Support Vector Machines (SVM) and Random Forest [4]. However, these approaches required extensive 

domain expertise for feature engineering and often failed to generalize across different crops, diseases, or environmental 

conditions. 

 

2.2 Deep Learning for Plant Disease Classification 

The introduction of deep learning, particularly CNNs, marked a significant advancement in plant disease detection ac- 

curacy. Pioneering work by Mohanty et al. [2] demonstrated that deep CNNs could achieve over 99% accuracy on the 

PlantVillage dataset, significantly outperforming traditional methods. Subsequent research has explored various CNN 

architectures, including ResNet, DenseNet, and Inception networks, consistently achieving high classification accuracy 

across multiple crops and diseases [5]. 

Transfer learning has emerged as a particularly effective approach, allowing researchers to leverage pre-trained models 

from large-scale datasets like ImageNet and fine-tune them for specific plant disease classification tasks [6]. This approach 

has proven especially valuable when dealing with limited agricultural datasets, enabling high accuracy with reduced 

training time and computational requirements. 

Despite their success, these high-capacity models typically range from 25 MB to over 500 MB in size and require 

substantial computational resources for inference, making them unsuitable for deployment on resource-constrained edge 

devices commonly used in agricultural applications. 

 

2.3 Lightweight Architectures for Mobile and Edge Computing 

Recognizing the need for efficient models, researchers have developed lightweight CNN architectures specifically de- 

signed for mobile and edge applications. MobileNet [7] introduced depthwise separable convolutions, which factorize 

standard convolutions into depthwise and pointwise operations, significantly reducing computational complexity while 

maintaining reasonable accuracy. 

MobileNetV2 [8] further improved upon the original design by incorporating inverted residuals and linear bottlenecks, 

achieving better accuracy-efficiency trade-offs. EfficientNet [9] proposed compound scaling of network depth, width, and 

resolution, demonstrating that careful scaling can achieve superior performance with fewer parameters. 

These architectures have shown promise for agricultural applications, with several studies demonstrating their effec- 

tiveness for crop disease detection while maintaining relatively small model sizes [10]. However, even these lightweight 

models often exceed the memory and computational constraints of low-end edge devices. 

 

2.4 Model Compression and Quantization Techniques 

Model compression encompasses various techniques aimed at reducing the size and computational requirements of neural 

networks while preserving their performance. Quantization, one of the most effective compression methods, reduces the 

precision of model weights and activations from 32-bit floating-point to lower-precision representations, typically 8-bit 

integers [11]. 

Post-Training Quantization (PTQ) applies quantization to a pre-trained model without requiring retraining, making it a 

convenient and fast compression method [12]. However, PTQ may result in significant accuracy degradation, particularly 

for models with complex architectures or when using aggressive quantization schemes. 

Dynamic Range Quantization (DRQ) represents a more sophisticated approach that dynamically determines the op- 

timal quantization parameters during the conversion process, often achieving better accuracy preservation compared to 

static quantization methods [13]. 

Quantization-Aware Training (QAT) incorporates quantization effects during the training process, allowing the model to 

adapt to the reduced precision and typically achieving the best accuracy-size trade-offs [11]. However, QAT requires 

access to the training dataset and significantly more computational resources. 

Several studies have applied quantization techniques to agricultural applications, demonstrating promising results for 
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crop disease detection on mobile devices [14]. However, comprehensive comparisons of different quantization approaches 

specifically for agricultural edge deployment remain limited. 

 

III.     METHODOLOGY 

 

3.1 Dataset 

This research utilizes the “Rice Leafs Disease Dataset” available on Kaggle, which contains high-quality images of rice 

leaves affected by various diseases. The dataset comprises 5,932 images distributed across six classes: bacterial leaf 

blight, brown spot, healthy leaves, leaf blast, leaf scald, and narrow brown spot. Each class contains between 900-1,000 

images, providing a relatively balanced dataset for training and evaluation. 

The images were captured under controlled conditions with consistent lighting and backgrounds, featuring close-up 

views of rice leaves with clear disease symptoms. Image resolution varies between 256x256 and 512x512 pixels, with 

all images converted to 224x224 pixels to match the input requirements of MobileNetV2. The dataset was randomly 

split into training (70%), validation (15%), and testing (15%) sets, ensuring representative distribution across all disease 

classes. 
 

3.2 Base Model Architecture 

We selected MobileNetV2 as the base architecture due to its proven efficiency and suitability for mobile deployment. 

MobileNetV2 employs several key innovations that make it particularly suitable for edge applications: 

• Depthwise separable convolutions that reduce computational complexity 

• Inverted residual blocks with linear bottlenecks 

• Efficient use of ReLU6 activation functions 

• Overall parameter count of approximately 3.4 million 

The model implementation utilized transfer learning, initializing with weights pre-trained on ImageNet. The final 

classification layer was replaced with a dense layer containing six neurons (corresponding to the six disease classes) with 

softmax activation. The architecture consists of the MobileNetV2 base model with frozen weights, followed by global 

average pooling, dropout layer (0.2), and a final dense classification layer. 
 

3.3 Model Training 

The baseline full-precision model was trained using the following configuration: 

• Optimizer: Adam with learning rate 0.001 

• Loss function: Categorical crossentropy 

• Batch size: 32 

• Training epochs: 50 with early stopping 

• Hardware: NVIDIA Tesla V100 GPU 

Data augmentation techniques were applied during training to improve generalization, including random rotation (±15 

degrees), width and height shifts (±0.1), horizontal flipping, and zoom range (0.1). The model achieved convergence after 

35 epochs with a final validation accuracy of 94.2%. 
 

3.4 Quantization Implementation 

Two quantization techniques were implemented and compared: 
 

3.1.1Post-Training Quantization (PTQ): 

This approach converts the trained model to TensorFlow Lite format with 8-bit integer quantization applied to both 

weights and activations. The conversion process applies uniform quantization parameters across the entire model, opti- 

mizing for storage efficiency while maintaining compatibility with edge hardware accelerators. 
 

3.1.2 Dynamic Range Quantization (DRQ): 

This method applies quantization dynamically, determining optimal quantization parameters during conversion through 

analysis of activation distributions. A representative dataset is used during conversion to calibrate the quantization pa- 

rameters for each layer, enabling more precise quantization that better preserves model accuracy. 

Both quantized models were evaluated on the test dataset using TensorFlow Lite interpreter to ensure accurate perfor- 

mance measurement under deployment conditions.  

 

IV.    RESULTS 
 

4.1 Model Performance Comparison 

Table I presents a comprehensive comparison of the three models across key performance metrics. The results demon- 

strate the effectiveness of quantization in achieving significant model size reduction while maintaining acceptable accu- 

racy levels. 
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 Table 1: Comparison of Model Performance Metrics  

 

Model Accuracy (%) Size (MB) F1-Score (Macro) 

Full-Precision 94.00 9.0 0.9374 

PTQ Quantized 83.00 2.5 0.8245 

DRQ Quantized 92.23 2.59 0.9212 

 

The full-precision baseline model achieved 94% accuracy with a model size of approximately 9 MB. Both quantiza- 

tion techniques successfully reduced the model size to approximately 2.5 MB, representing a 72% reduction in storage 

requirements. However, the quantization approaches showed significantly different accuracy preservation characteristics. 

 

4.2 Detailed Performance Analysis 

4.1.1 Post-Training Quantization Results: 

The PTQ model showed substantial accuracy degradation, achieving 83% accuracy compared to the baseline’s 94%. 

Table II presents the detailed per-class performance metrics, revealing significant variations in quantization impact across 

different disease types. 

 

Table 2: Post-Training Quantization (PTQ) - Per-Class Performance Metrics 

 

Disease Class Precision Recall F1-Score 

Bacterial Leaf Blight 0.75 1.00 0.85 

Brown Spot 0.89 0.67 0.77 

Healthy 0.93 0.91 0.92 

Leaf Blast 0.64 0.89 0.74 

Leaf Scald 0.95 0.94 0.95 

Narrow Brown Spot 1.00 0.56 0.72 

Macro Average 0.86 0.83 0.8245 

 

The confusion matrix analysis revealed that PTQ particularly struggled with distinguishing between leaf blast and 

brown spot, with frequent misclassifications between these visually similar conditions. Notably, the narrow brown spot 

class showed perfect precision but low recall, indicating conservative classification behavior. 

 

4.1.2 Dynamic Range Quantization Results: 

The DRQ model demonstrated superior performance, maintaining 92.23% accuracy with only a 1.77% degradation from 

the baseline. Table III shows the per-class metrics, which consistently demonstrate higher performance across all disease 

categories compared to PTQ. 

 

Table 3: Dynamic Range Quantization (DRQ) - Per-Class Performance Metrics 

 

 

 

 

 

 

 

 

 

 

 

 

The DRQ model maintained high precision and recall across most classes, with particularly strong performance in 

detecting leaf scald and narrow brown spot. The macro-averaged F1-score of 0.9212 indicates robust performance across 

all disease categories. Compared to PTQ, DRQ shows significant improvements in recall for narrow brown spot (0.97 vs 

0.56) and precision for leaf blast (0.76 vs 0.64). 

 

Disease Class Precision Recall F1-Score 

Bacterial Leaf Blight 0.97 1.00 0.98 

Brown Spot 0.95 0.70 0.81 

Healthy 0.92 0.95 0.94 

Leaf Blast 0.76 0.91 0.83 

Leaf Scald 0.98 1.00 0.99 

Narrow Brown Spot 0.99 0.97 0.98 

Macro Average 0.93 0.92 0.9212 
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4.3 Inference Performance 

Inference time measurements were conducted on a Raspberry Pi 4 Model B to evaluate real-world edge deployment 

performance. Table IV summarizes the inference speed comparison across all three models. 

 

Table 4: Inference Performance Comparison on Raspberry Pi 4 Model B 

 

Model Inference Time (seconds) Speedup Factor 

Full-Precision 2.3 1.0x (baseline) 

PTQ Quantized 0.8 2.9x 

DRQ Quantized 0.9 2.6x 

 

The quantized models demonstrated significant speedup compared to the full-precision model, with PTQ achieving the 

fastest inference time of 0.8 seconds per image and DRQ following closely at 0.9 seconds per image. These results con- 

firm the practical benefits of quantization for edge deployment, enabling near real-time inference on resource-constrained 

devices. 

 

V.      ANALYSIS AND DISCUSSION 

 

5.1 Impact of Quantization on Model Efficiency 

The experimental results clearly demonstrate the effectiveness of quantization in creating deployable models for edge 

devices. The reduction from 9 MB to approximately 2.5 MB represents a critical improvement for applications targeting 

smartphones, tablets, and embedded systems with limited storage capacity. This size reduction enables deployment 

scenarios previously impractical with full-precision models, including offline operation in areas with limited internet 

connectivity. 

The storage efficiency gains translate directly to practical benefits for agricultural applications. A 2.5 MB model can be 

easily embedded within mobile applications, updated over cellular networks with minimal data costs, and stored on 

devices with limited memory. This accessibility is particularly important for smallholder farmers in developing countries 

who may rely on low-cost smartphones for agricultural guidance. 

 

5.2 Comparative Analysis of Quantization Techniques 

The performance comparison between PTQ and DRQ reveals significant differences in their effectiveness for agricultural 

image classification. The DRQ model’s superior performance (92.23% vs. 83% accuracy) can be attributed to its more 

sophisticated approach to quantization parameter selection. 

PTQ applies uniform quantization parameters across the entire model, which may not optimally represent the diverse 

feature distributions learned by different layers. This limitation becomes particularly problematic for agricultural images, 

where subtle visual differences between disease symptoms require precise feature representation. The 11-point accuracy 

gap between PTQ and DRQ methods highlights this limitation. 

DRQ’s dynamic parameter selection allows for layer-specific optimization, better preserving the discriminative fea- 

tures crucial for disease classification. The per-class performance analysis reveals that DRQ consistently outperforms 

PTQ across most disease categories, with particularly notable improvements in challenging cases like leaf blast detection 

(F1-score: 0.83 vs. 0.74). 

 

5.3 Practical Implications for Agricultural Deployment 

The DRQ model’s combination of 92.23% accuracy, 2.59 MB size, and 2.6x inference speedup makes it highly suitable for 

practical agricultural applications. The minimal accuracy loss (1.77%) represents an acceptable trade-off considering the 

substantial efficiency gains. This performance level exceeds many human experts’ consistency in disease identification, 

particularly for early-stage symptoms or visually similar conditions. 

The real-world deployment scenario analysis suggests that the DRQ model can enable several practical applications: 

• Mobile applications for farmers providing instant disease diagnosis 

• Integration with drone-based crop monitoring systems 

• Embedded systems for continuous field monitoring 

• Educational tools for agricultural extension services 

The inference speed of 0.9 seconds per image on Raspberry Pi 4 enables near real-time processing for individual image 

analysis while remaining suitable for batch processing of multiple images captured during field surveys. 

 

5.4 Limitations and Challenges 

Despite the promising results, several limitations must be acknowledged. The dataset’s controlled conditions may not 
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fully represent the variability encountered in real-world agricultural settings, including diverse lighting conditions, camera 

angles, and image quality variations. The performance degradation observed with aggressive quantization (PTQ) indicates 

that further compression may require more sophisticated approaches such as Quantization-Aware Training. 

The current evaluation focuses on a single crop (rice) and may not generalize to other crops with different visual 

characteristics or disease symptoms. Additionally, the model’s performance on images captured with varying camera 

sensors, resolutions, and preprocessing pipelines requires further investigation. 

 

5.5 Future Research Directions 

Several avenues for future research emerge from this work. Quantization-Aware Training represents a promising approach 

for further improving the accuracy-efficiency trade-off by incorporating quantization effects during the training process. 

Hybrid quantization schemes that apply different precision levels to different model layers could potentially achieve better 

performance than uniform quantization approaches. 

The integration of knowledge distillation with quantization could enable the development of even smaller models while 

maintaining high accuracy. Additionally, investigating neural architecture search (NAS) techniques specifically 

optimized for quantized models could lead to architectures better suited for compression. 

From an application perspective, expanding the evaluation to include multiple crops, diverse environmental condi- 

tions, and different camera sensors would provide valuable insights into the model’s generalization capabilities. The 

development of continual learning approaches that allow models to adapt to new diseases or environmental conditions 

while maintaining deployment efficiency represents another important research direction. 

 

VI.      CONCLUSION 

 

This research demonstrates the practical viability of quantized deep learning models for crop disease classification on edge 

devices. Through comprehensive evaluation of MobileNetV2 with different quantization approaches, we have shown that 

model compression can achieve substantial efficiency improvements while maintaining acceptable accuracy for agricul- 

tural applications. 

The key findings of this study include: (1) quantization successfully reduced model size by 72% (from 9 MB to 2.5 

MB) while achieving significant inference speedup on edge devices, (2) Dynamic Range Quantization outperformed 

Post-Training Quantization, maintaining 92.23% accuracy compared to the original model’s 94%, and (3) the quantized 

models demonstrate practical deployment viability with inference times suitable for real-world agricultural applications. 

The DRQ approach emerges as the recommended quantization technique for agricultural edge applications, offering 

the optimal balance between model size, accuracy, and inference speed. The minimal accuracy degradation (1.77%) 

represents an acceptable trade-off for the substantial efficiency gains, making automated rice disease detection feasible 

on resource-constrained devices commonly available to farmers. 

These findings have significant implications for precision agriculture, particularly in developing countries where ac- 

cess to agricultural expertise may be limited. The deployment of efficient disease detection models on mobile devices can 

democratize access to advanced agricultural diagnostics, potentially reducing crop losses and improving food security. 

Future work should focus on expanding the evaluation to multiple crops, implementing Quantization-Aware Training 

approaches, and developing more sophisticated compression techniques that can achieve even better accuracy-efficiency 

trade-offs. The integration of these models with complete agricultural decision support systems represents an important 

step toward realizing the full potential of AI in sustainable agriculture. 
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