
ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 6, June 2025

DOI: 10.17148/IJIREEICE.2025.13603

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 19

A novel, heart diagnosis tool, based on Electro-

cardiogram (ECG), using VHDL and FPGAs

Dr Evangelos I. Dimitriadis1, Leonidas Dimitriadis2

Department of Computer, Informatics and Telecommunications Engineering, International Hellenic University,

End of Magnisias Str, 62124 Serres Greece.1

Undergraduate student, Department of Information and Electronic Engineering, International Hellenic University,

57400, Sindos Thessaloniki, Greece. 2

Abstract: An FPGA-based system is presented here, capable of simultaneous measuring electrocardiogram (ECG) in-

put values and display them in seven-segment displays, while it also derives a heart diagnosis, based on the above

ECG. Heart diagnosis activates corresponding LED alarm system, providing information about several heart problems

such as hypercalcemia, hypocalcemia, hyperkalemia, coronary ischemia, bundle-branch block and AV node block, all

of them derived from critical time values of the ECG. Our system has also the ability of calculating and presenting in

seven-segment displays, heart beat rate in pulses/min, with simultaneous activation of corresponding alarm system,

which is responsible of lighting three respective heart beat rate LEDs, for vradycardia, normal heart beat rate and tach-

ycardia. Additionally, buzzer alarm and all FPGA board LEDs are also simultaneously activated, if pulses/min values

are less than 60 (vradycardia) or higher than 100 (tachycardia). The system uses DE10-Lite FPGA board with an HW

827 sensor connected to it. The above sensor output is also connected to a blinking LED system, in order to have visual

information of heart beat rate. Our system can work with a variety of heart pulse sensors and it is clear that deriving a

successful heart diagnosis requires an electrocardiogram recording that is as accurate as possible. The system can also

be combined with IoT technology, offering doctors the ability to remotely monitor patients online.

Keywords: Heart beat rate, Sensors, Heart diagnosis, VHDL, Buzzer, LEDs

I. INTRODUCTION

FPGAs have the main advantage of combining software and hardware, thus enabling hardware programming for a se-

ries of applications. The most used languages for FPGAs’ programing are VHDL and Verilog and VHDL is the one

used in our work.

An interesting application field of FPGAs is heart beat sensoring and monitoring. We found out that in spite of all work

done concerning various FPGAs applications, there are a few projects (1-7) involved with heart systems. Presented works

use expensive and complicated systems and the main problem they try to solve is recording, filtering and presenting a

sufficient electrocardiogram (ECG). Our system uses electrocardiogram input values, in order to derive a heart diagno-

sis, valuable for patients monitoring. It uses several alarm systems for heart diagnosis, heart beat rate characterization

and simultaneous buzzer activation, as well as heart beat visualization via a blinking LED system. Another benefit of

our system is that it can work with a variety of heart sensors and also its cost is remarkably low.

II. DESIGN OVERVIEW AND OPERATION OF THE SYSTEM

Figure1 presents device overview and operational units of our system, using FPGA DE10-Lite board, while Figure 2

presents circuit diagram of the system.

It is obvious from both of the above figures that our system, except from DE10-Lite FPGA board, contains also some

basic circuit parts. The first one is heart beat LED blinking unit used for providing a visualized view of heart beat input.

Next to it there is heart beat rate LEDs unit used for lighting respective LEDs, depending on pulses/min values (vrady-

cardia, normal heart beat rate and tachycardia). This unit has also a buzzer circuit containing a transistor and diode and

it is connected in I/O pins of the FPGA

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 6, June 2025

DOI: 10.17148/IJIREEICE.2025.13603

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 20

Figure 1: Device overview and operational units of our system.

Figure 2: Circuit diagram of our system

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 6, June 2025

DOI: 10.17148/IJIREEICE.2025.13603

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 21

board. It is the circuit that controls buzzer’s operation. The transistor is used for amplifying signal bit 1 sent by the I/O

pins of FPGA board, in order to provide sufficient voltage supply for buzzer operation. Buzzer is activated if heart beat

rate is out of normal values of 60-100 pulses/min.

Heart diagnosis indicating LEDs unit is another very important part of our system. Depending on ECG input values the

above unit lights up respective LEDs, thus giving us information about the existence of several heart problems.

DE10-Lite FPGA board used here offers its seven-segment displays for presenting pulses/min and input ECG voltage

values.

HW 827 heart beat pulse sensor, acts as main input unit in conjunction with FPGA’s clock which provides us with the

second very important parameter of an ECG, which is time. Figures 3 and 4 present our system and its units, in func-

tion condition.

Our system starts operating as soon as power supply +5V is applied to all circuits and the VHDL program is sent via

USB Blaster interface, to FPGA chip, reading at first input voltages from HW 827 pulse sensor, with simultaneous start

of time measurement. The analogue input voltages are converted to digital and presented in seven-segment displays.

The system receives input voltage values periodically, ensuring continuous voltage change monitoring.

Consequently, units of heart beat blinking LED, heart beat rate LEDs and heart diagnosis indicating LEDs, are put in

use. The first unit is not receiving an output bit from FPGA I/O pins and no VHDL program is necessary for it to func-

tion. The other two units receive bit 1 for their different LEDs in order to light them ON. In heart beat rate unit we use

three LEDs, blue, red and yellow and they transit to ON condition if calculated pulses/min<60, pulses/min>100 and

60<=pulses/min<=100, respectively. As we mentioned above, if pulses/min value is not normal, buzzer alarm and all

FPGA board LEDs, also transit to ON state.

Figure 3: Normal function condition of our system, presenting pulses /min and input voltage values with simultaneous

heart beat blinking LED working, according to HW 827 pulse sensor input.

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 6, June 2025

DOI: 10.17148/IJIREEICE.2025.13603

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 22

Figure 4: Heart diagnosis part of our system, presenting existing heart problems, based on ECG input.

Heart diagnosis indicating LEDs unit, is the third of the above three units which starts operating. It uses five LEDs,

green, blue, white, yellow and red. Each one of them must receive bit 1 from FPGA I/O pins, in order to light ON. If

green LED is ON it means that we have a normal electrocardiogram (ECG) input. Each one of the other four LEDs,

corresponds to one of the heart problems that will be presented below.

All the above controls are periodically operated as long as the system is at the ON state. The system goes to OFF state

if external circuit voltage supply is OFF or if FPGA board is unplugged from USB Blaster, or both of them.

III. PROGRAMING THE SYSTEM

We used Quartus Prime Lite Edition 21.1.1 to create the VHDL programs of our system. It must be mentioned here that

before proceeding with the VHDL programming of our system, we had to set a series of parameters controlling the op-

eration of DE10-Lite FPGA’s Analog to Digital Converter (ADC). This converter plays a very important role in the

whole system operation, since it converts the analogue input voltages from HW 827 sensor connected to FPGA board

to digital values, acting as main input of the system. The files created by the above ADC parameters setting are import-

ed into the final project of our system.

We present below in Figure 5 typical sinus rhythm electrocardiogram (ECG), with critical time values used in our

study, shown in red.

An ECG includes a number of very important parts, such as P wave, QRS complex, T wave and also critical time inter-

vals, such as PR interval, PR segment, ST segment and QT interval, all of them providing precious information about

heart function.

It is obvious that an ECG diagram presents voltage values (y-axis) versus time values (x-axis).

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 6, June 2025

DOI: 10.17148/IJIREEICE.2025.13603

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 23

Table 1 shows basic ECG parameter values (2,6,7) appeared in bibliography.

Figure 5: Typical sinus rhythm electrocardiogram (ECG), with critical time values used in our study, shown in red.

Table 1: ECG parameter values

P wave PR inter-

val

PR seg-

ment

QRS complex ST segment QT interval T wave

0.11sec,

0.1-0.25 mV

0.12-0.2

sec

0.06-0.1

sec

0.09-0.1 sec,

1-1.6 mV

0.10-0.15 sec 0.35-0.44 sec 0.1-0.15 sec,

0.5mV

All the above parameters play critical role in heart function and in conjunction with data presented in Table 2, are the

basis of our VHDL program controlling the system presented in this work.

Table 2 shows several heart problems that arise from specific ECG parameter values. It also presents corresponding

LEDs that light ON, in order to inform us about respective heart problems.

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 6, June 2025

DOI: 10.17148/IJIREEICE.2025.13603

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 24

Table 2: Heart problems related to ECG parameter values and corresponding system LEDs ON

Short QT interval-Long

QT interval

Flat or inverted T waves Increased QRS Increased PR

Hypercalcemia, hyper-

kalemia-hypocalcemia

Coronary ischemia,

hypokalemia, left ven-

tricular hypertrophy

Bundle-branch block.

Depolarization of ven-

tricles and triggering

main pumping contrac-

tions, delays

AV node block, which

results in long delay of

AV node to allow fill-

ing of ventricles

Red led alarm Yellow led alarm White led alarm Blue led alarm

The main idea of our program is to distinguish specific ECG input voltage values and their corresponding time values,

in order to calculate critical time intervals shown in Table 2, thus resulting in a heart diagnosis. Consequently corre-

sponding LEDs light ON. If we distinguish, for example P wave input voltage value, we can create in a VHDL process

a respective time variable x1 as shown in Figure 5. Taking x1 as data and combining it with Table 1 in which P wave

has a time duration of 0.11 sec, with x1 being in the middle of this time period, we can calculate time values of x11 and

x12, also shown in Figure 5.

A similar method is used in order to distinguish T wave and its x6, x61 and x62 time values. The R wave of QRS com-

plex is easy to be distinguished because it corresponds to the higher input voltage value, as presented in Table 1. Since

R wave is almost in the middle of a normal sinus heart pulse, we can double its corresponding time value x4 and calcu-

late the period of one heart pulse in seconds, thus making it easy to produce the number of pulses/min.

Α correction factor may be needed for the final value of pulses/min, depending on the heart pulse sensor that we use as

main ECG values input.

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 6, June 2025

DOI: 10.17148/IJIREEICE.2025.13603

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 25

Figure 6: Flowchart diagram, presenting main functions-processes of our system.

The overall program is shown in the appendix of this paper and Figure 6 shows a flowchart diagram, presenting main

functions of our system and contains the main algorithmic procedures used here.

Since heart beat rate and the time intervals shown in Table 2 are calculated, we use a number of VHDL processes in

order to display pulses/min value and light ON corresponding LEDs for vradycardia, normal heart beat rate and tachy-

cardia, as mentioned above.

LEDs that present heart problems shown in Table 2, also become active, depending on respective VHDL process used

with ECG input values.

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 6, June 2025

DOI: 10.17148/IJIREEICE.2025.13603

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 26

Another VHDL process in our program, controls the activation of all FPGA board LEDs and buzzer sounding, if puls-

es/min values are less than 60 or higher than 100, as shown in the above Figure 6.

Figure 7 presents an ECG-like diagram produced by HW 827 pulse sensor, used in this work with input voltage values

converted to mV, in order to fit a classic ECG diagram. The above values were verified by a digital voltmeter.

Figure 7: An ECG-like diagram produced by HW 827 pulse sensor, used in this work.

The above ECG diagram was used as an interesting test for our system’s reliability and especially for the VHDL algo-

rithms used here. We observe very good agreement and matching between VHDL algorithms and the results which

came out of our system’s different control units. The R wave corresponds to an input voltage value of 1.5 mV and time

value is near 370 ms, which is the value of x4 time variable mentioned above and presented in Figure 5. It results in a

pulses/min value of about 80, which is the value appearing in seven-segment displays of the FPGA board shown in

Figures 3 and 4.

The heart diagnosis indicating LEDs unit presented in Figure 4, has three LEDs at the ON state. White, yellow and red

LEDs are ON indicating corresponding heart problems presented in Table 2. White LED ON indicates increased QRS

complex and we see that Figure 7 shows a QRS time interval value from 310 ms to 420 ms, thus overcoming with mar-

ginal exceedance the value of 100 ms= 0.1 s presented in Table 1.

Yellow LED ON indicates flat or inverted T waves and it is obvious from Figure 7 that we obtain nearly flat T waves.

Finally red LED ON indicates in our case, long QT interval which holds true, since we have no T wave in Figure 7, for

limiting QT interval.

As we mentioned earlier, a successful ECG recording could lead to more accurate heart diagnosis and heartbeat rate

calculation, thus sensor system used for ECG monitoring plays decisive role for obtaining valid results.

IV. CONCLUSIONS

A novel FPGA-based system is presented here, which manages to monitor an electrocardiogram (ECG) and activate

several units, with their behavior based on the ECG. The system uses VHDL language and a number of processes

which give the abilities of displaying input voltage values, calculating and displaying heart beat rate and its characteri-

zation by activating specific LEDs and also deriving a heart diagnosis using for output five LEDs, presenting corre-

sponding heart problems. Additionally our system provides a visualized view of heart beat rate by using another LED

connected to HW 827 pulse sensor. The above sensor acts as the main input for our system. In case that heart beat rate

is out of normal values (60-100 pulses/min), buzzer alarm and all FPGA board LEDs are activated. It is obvious that we

must have accurate and clear ECG data, in order to obtain valid results from our system. The system can work with a

variety of pulse sensors and it is easy to be manufactured, providing also the benefit of low cost.

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 6, June 2025

DOI: 10.17148/IJIREEICE.2025.13603

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 27

REFERENCES

[1]. C. Swapna, J.V. Kumar, K.R. Raghavendra and T. Ramanjappa, ‘FPGA based Heart Beat Measurement System’,

International Conference on Information Technology, Electronics and Communications (ICITEC), 2012

[2]. B.K. Rehman, A. Kumar and P. Sharma, ‘An FPGA based High Performance Heart Beat Monitoring System’,

International Journal of Control Theory and Applications, vol. 10, no 18, pp. 245-253, 2017

[3]. Y. Wang, ‘ A pulse sensor interface design for FPGA based multisensor health monitoring platform’, International

Journal of Biosensors and Bioelectronics, 5 (1), pp. 23-27, 2019

[4]. K. Meddah, M.K. Talha, M. Bahoura and H. Zairi, ‘ FPGA-based system for heart rate monitoring’, IET Circuits,

Devices and Systems, vol. 13, is.6, pp. 771-782, 2019

[5]. J.A.G. Limon, F.M.-Suarez and C.A.-Serrano, ‘Implementation of Wavelet-Transform-Based Algorithms in an

FPGA for Heart Rate and RT Interval Automatic Measurements in Real Time: Application in a Long-Term Ambu-

latory Electrocardiogram Monitor’, Micromachines, 14, 1748, 2023

[6]. https://www.instructables.com/ECG-Monitoring-System-by-Using-Arduino-or-AD8232/

[7]. https://en.wikipedia.org/wiki/Electrocardiography

APPENDIX

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use ieee.std_logic_signed.ALL;

use ieee.std_logic_unsigned.ALL;

entity DE10_Lite_ADC_sensors is

generic(ClockFrequencyHz : integer:=50000000);

port

(

rst : in std_logic;

nRst : in std_logic;

Seconds : inout integer;

Ticks : inout integer;

led1: out std_logic;

led2: out std_logic;

led3: out std_logic;

led4: out std_logic;

led5: out std_logic;

led6: out std_logic;

led7: out std_logic;

led8: out std_logic;

led9: out std_logic;

led10: out std_logic;

led_blue: buffer std_logic; --vradycardia

led_red: buffer std_logic;--tachycardia

led_yellow: buffer std_logic;--normal

led_blue_out: out std_logic;--vradycardia

led_red_out: out std_logic;--tachycardia

led_yellow_out: out std_logic;--normal

buzzer:out std_logic; --rings on tachycardia or vradycardia

Vr: buffer integer;

pulses_per_minute: buffer integer;

d2bbuf :buffer integer range 0 to 9;

d1bbuf :buffer integer range 0 to 9;

d0bbuf :buffer integer range 0 to 9;

SW0 : in std_logic;

https://ijireeice.com/
https://ijireeice.com/
https://www.instructables.com/ECG-Monitoring-System-by-Using-Arduino-or-AD8232/
https://en.wikipedia.org/wiki/Electrocardiography

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 6, June 2025

DOI: 10.17148/IJIREEICE.2025.13603

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 28

red_led_alarm : out std_logic; --hypercalcemia, hyperkalemia, hypocalcemia

yellow_led_alarm: out std_logic;--coronary ischemia

white_led_alarm: out std_logic;--bundle-branch block

blue_led_alarm: out std_logic;--AV node block

green_led_no_alarm: out std_logic;-- none of the above problems

red_led_alarm_buff : buffer std_logic;-- hypercalcemia, hyperkalemia, hypocalcemia

yellow_led_alarm_buff: buffer std_logic;-- coronary ischemia

white_led_alarm_buff: buffer std_logic;-- bundle-branch block

blue_led_alarm_buff: buffer std_logic;-- AV node block

green_led_no_alarm_buff: buffer std_logic;-- none of the above problems

-- Clocks

ADC_CLK_10: in std_logic;

MAX10_CLK1_50: in std_logic;

MAX10_CLK2_50: in std_logic;

-- KEYs

KEY: in std_logic_vector(1 downto 0);

-- HEX

HEX0: out std_logic_vector(7 downto 0);

HEX1: out std_logic_vector(7 downto 0);

HEX2: out std_logic_vector(7 downto 0);

HEX3: out std_logic_vector(7 downto 0);

HEX4: out std_logic_vector(7 downto 0);

HEX5: out std_logic_vector(7 downto 0);

ARDUINO_IO: inout std_logic_vector(15 downto 0);

ARDUINO_RESET_N: inout std_logic);

-- GPIO

--GPIO: inout std_logic_vector(35 downto 0));

end entity;

architecture DE10_Lite_ADC_sensors_Arch of DE10_Lite_ADC_sensors is

-- Analog to Digital Converter IP core

component myADC is

port

(

clk_clk: in std_logic := 'X';

modular_adc_0_command_valid: in std_logic := 'X';

modular_adc_0_command_channel: in std_logic_vector(4 downto 0) := (others => 'X');

modular_adc_0_command_startofpacket: in std_logic := 'X';

modular_adc_0_command_endofpacket: in std_logic := 'X';

modular_adc_0_command_ready: out std_logic;

modular_adc_0_response_valid: out std_logic;

modular_adc_0_response_channel: out std_logic_vector(4 downto 0);

modular_adc_0_response_data: out std_logic_vector(11 downto 0);

modular_adc_0_response_startofpacket: out std_logic;

modular_adc_0_response_endofpacket: out std_logic;

reset_reset_n: in std_logic

);

end component myADC;

signal modular_adc_0_command_valid: std_logic;

signal modular_adc_0_command_channel: std_logic_vector(4 downto 0);

signal modular_adc_0_command_startofpacket: std_logic;

signal modular_adc_0_command_endofpacket: std_logic;

signal modular_adc_0_command_ready: std_logic;

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 6, June 2025

DOI: 10.17148/IJIREEICE.2025.13603

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 29

signal modular_adc_0_response_valid: std_logic;

signal modular_adc_0_response_channel: std_logic_vector(4 downto 0);

signal modular_adc_0_response_data: std_logic_vector(11 downto 0);

signal modular_adc_0_response_startofpacket: std_logic;

signal modular_adc_0_response_endofpacket: std_logic;

signal clk_clk: std_logic;

signal reset_reset_n: std_logic;

type state_machines is (sm0,sm1, sm2, sm3, sm4);

signal sm: state_machines;

-- signals to store conversion results

signal ADCIN1,ADCIN4, ADCIN3,ADCIN2: std_logic_vector(11 downto 0);

signal AD1,AD4, AD3,AD2: std_logic_vector(11 downto 0);

-- signals for BCD digits

signal digit2b, digit1b, digit0b: std_logic_vector(3 downto 0);

signal digit2c, digit1c, digit0c: std_logic_vector(3 downto 0);

signal digit5, digit4, digit3, digit2, digit1, digit0: std_logic_vector(3 downto 0);

-- signal to determine how fast the

-- 7-seg displays will be updated

signal cnt: integer;

signal state_LED: std_logic;

signal state_Vr: integer;

--signal Ticks : integer;

begin

-- ADC port map

adc1: myADC port map

(

modular_adc_0_command_valid => modular_adc_0_command_valid,

modular_adc_0_command_channel => modular_adc_0_command_channel,

modular_adc_0_command_startofpacket => modular_adc_0_command_startofpacket,

modular_adc_0_command_endofpacket => modular_adc_0_command_endofpacket,

modular_adc_0_command_ready => modular_adc_0_command_ready,

modular_adc_0_response_valid => modular_adc_0_response_valid,

modular_adc_0_response_channel => modular_adc_0_response_channel,

modular_adc_0_response_data => modular_adc_0_response_data,

modular_adc_0_response_startofpacket => modular_adc_0_response_startofpacket,

modular_adc_0_response_endofpacket => modular_adc_0_response_endofpacket,

clk_clk => clk_clk,

reset_reset_n => reset_reset_n

);

clk_clk <= MAX10_CLK1_50;

reset_reset_n <= KEY(0);

-- process for reading new samples

p1: process(reset_reset_n, clk_clk)

begin

if reset_reset_n = '0' then

 sm <= sm0;

elsif rising_edge(clk_clk) then

 case sm is

 when sm0 =>

 sm <= sm1;

 modular_adc_0_command_valid <= '1';

modular_adc_0_command_channel <= "00001";

 when sm1 =>

if modular_adc_0_response_valid = '1' then

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 6, June 2025

DOI: 10.17148/IJIREEICE.2025.13603

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 30

modular_adc_0_command_channel <= "00010";

 ADCIN4 <= modular_adc_0_response_data;

 sm <= sm2;

 end if;

 when sm2 =>

if modular_adc_0_response_valid = '1' then

modular_adc_0_command_channel <= "00001";

modular_adc_0_command_channel <= "00011";

ADCIN1 <= modular_adc_0_response_data;

 sm <= sm1;

 sm <= sm3;

 end if;

 when sm3 =>

if modular_adc_0_response_valid = '1' then

modular_adc_0_command_channel <= "00100";

ADCIN2 <= modular_adc_0_response_data;

 sm <= sm4;

 end if;

 when sm4 =>

if modular_adc_0_response_valid = '1' then

modular_adc_0_command_channel <= "00001";

ADCIN3 <= modular_adc_0_response_data;

 sm <= sm1;

 end if;

 when others =>

 end case;

end if;

end process;

-- process for conversion from binary to BCD (analog input voltage)

p3: process(AD2,d2bbuf,d1bbuf,d0bbuf)

variable vin: integer;

variable d2, d1, d0: integer;

begin

vin := to_integer(signed(std_logic_vector(to_signed(to_integer(signed(AD2)) * 500,

32))(31 downto 12)));

d2 := vin / 100;

d1 := vin mod 100 / 10;

d0 := ((vin mod 100) mod 10);

digit2b <= std_logic_vector(to_signed(d2, 4));

digit1b <= std_logic_vector(to_signed(d1, 4));

digit0b <= std_logic_vector(to_signed(d0, 4));

d2bbuf<= d2;

d1bbuf<= d1;

d0bbuf<= d0;

end process;

state_Vr<= (d2bbuf*100)+(d1bbuf*10)+(d0bbuf);

Vr<= state_Vr;

-- determine how fast the 7-seg displays will be updated

p4: process(reset_reset_n, clk_clk)

begin

if reset_reset_n = '0' then

cnt <= 0;

elsif rising_edge(clk_clk) then

if cnt < 20_000_000 then

cnt <= cnt + 1;

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 6, June 2025

DOI: 10.17148/IJIREEICE.2025.13603

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 31

else

cnt <= 0;

AD1 <= ADCIN1;

AD2 <= ADCIN2;

AD3 <= ADCIN3;

AD4 <= ADCIN4;

end if;

end if;

end process;

--time

process(MAX10_CLK1_50) is

 begin

 if rising_edge(MAX10_CLK1_50) then

 ------ If the negative reset signal is active

 if nRst = '0' then

 Ticks <= 0;

 Seconds <= 0;

 else

 -- True once every second

 if Ticks = ClockFrequencyHz - 1 then

 Ticks <= 0;

 Seconds <= Seconds + 1;

 else

 Ticks <= Ticks + 1;

 end if;

 end if;

 end if;

 end process;

process (Vr,Ticks,MAX10_CLK1_50)

variable x1: integer;

variable x11:integer;

variable x12: integer;

variable x2: integer;

variable x3: integer;

variable x4: integer;

variable x5: integer;

variable x7: integer;

variable x6: integer;

variable x61: integer;

variable x62: integer;

begin

IF Ticks<=750000000 THEN--50000000 Ticks= 1sec

IF Vr >=10 AND Vr<= 25 THEN

x1:= Ticks; --P wave peak

end if;

IF Vr>=70 THEN --AND Ticks>x1

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 6, June 2025

DOI: 10.17148/IJIREEICE.2025.13603

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 32

x4:= Ticks; --R wave 1st peak

end if;

IF Vr>=10 AND Vr<=50 THEN --AND Ticks>x1 AND Ticks>x4

x6:= Ticks; --T wave peak

end if;

x11:= x1- (5/100)*50000000;-- taking into account bibliograrhic references that P wave duration is 0.10sec

x12:= x1 +(5/100)*50000000;

x61:= x6 -(75/1000)*50000000; -- taking into account bibliograrhic references that T wave duration is 0.15sec

x62:= x6 +(75/1000)*50000000;

x2:= x12 +(1/10)*50000000; -- taking into account bibliograrhic references that PR segment duration is 0.1sec

IF Vr>=-40 AND Vr<=-25 THEN --AND Ticks>x1

x3:= Ticks; --Q wave peak

end if;

IF Vr>-80 AND Vr<-75 THEN --AND Ticks>x1 AND Ticks>x4

x5:= Ticks; -- S wave peak

end if;

x7:= x5 +(33/1000)*50000000; -- taking into account bibliograrhic references that QRS duration is 0.1sec

IF (x62 - x2)> (3/10)*50000000 OR (x62 - x2) < (3/10)*50000000 THEN --short or long QT interval

red_led_alarm_buff<= '1';

end if;

IF (Ticks>= x61 AND Ticks<= x62) AND (Vr<=0) THEN--flat or inverted T waves

yellow_led_alarm_buff<= '1';

end if;

IF (x7 - x2)> (1/10)*50000000 THEN-- increased QRS interval

white_led_alarm_buff<= '1';

end if;

IF (x2 - x11)> (2/10)*50000000 THEN-- increased PR interval

blue_led_alarm_buff<= '1';

end if;

end if;

pulses_per_minute<= ((1/((2*x4)/50000000))*60);

end process;

process(pulses_per_minute,digit2c,digit1c,digit0c)

variable d2, d1, d0: integer;

begin

d2:= pulses_per_minute/ 100;

d1:= pulses_per_minute mod 100/ 10;

d0:= ((pulses_per_minute mod 100) mod 10);

digit2c <= std_logic_vector(to_unsigned(d2, 4));

digit1c <= std_logic_vector(to_unsigned(d1, 4));

digit0c <= std_logic_vector(to_unsigned(d0, 4));

end process;

--critical pulses_per_minute value exceeded buzzer sounds

Process(MAX10_CLK1_50,pulses_per_minute)

variable i : integer := 0;

BEGIN

IF (pulses_per_minute>100) OR (pulses_per_minute<60) THEN

if MAX10_CLK1_50'event and MAX10_CLK1_50 = '1' then

if i <= 50000000 then

i := i + 1;

buzzer <= '1';

elsif i > 50000000 and i < 100000000 then

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 6, June 2025

DOI: 10.17148/IJIREEICE.2025.13603

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 33

i := i + 1;

buzzer <= '0';

elsif i = 100000000 then

i := 0;

end if;

end if;

end if;

end process;

--critical pulses_per minute value 100 exceeded, or less than 60 board LEDs and external red led lights up

process(state_LED,led_red,pulses_per_minute, led_blue, led_yellow)

begin

 IF pulses_per_minute>100 THEN

 led_red <= '1';

 state_LED <= '1';

 led_blue <= '0';

 led_yellow <= '0';

 elsif pulses_per_minute<=100 and pulses_per_minute>=60 THEN

 led_red <= '0';

 led_blue <='0';

 led_yellow <='1';

 state_LED <= '0';

 elsif pulses_per_minute<60 THEN

 led_blue <= '1';

 state_LED <= '1';

 led_red <= '0';

 led_yellow <= '0';

 end if;

end process;

led_red_out<= led_red;

led_blue_out<= led_blue;

led_yellow_out<= led_yellow;

led1 <= state_LED;

led2 <= state_LED;

led3 <= state_LED;

led4 <= state_LED;

led5 <= state_LED;

led6 <= state_LED;

led7 <= state_LED;

led8 <= state_LED;

led9 <= state_LED;

led10 <= state_LED;

--alarm level for several heart problems extracted from the electrocardiogram

process(red_led_alarm_buff,yellow_led_alarm_buff,white_led_alarm_buff,

blue_led_alarm_buff,green_led_no_alarm_buff) -- none of the above problems

begin

IF ((red_led_alarm_buff ='0') AND (yellow_led_alarm_buff ='0')

AND (white_led_alarm_buff ='0') AND (blue_led_alarm_buff ='0')) THEN

green_led_no_alarm_buff <= '1';

end if;

end process;

red_led_alarm <= red_led_alarm_buff;

yellow_led_alarm <= yellow_led_alarm_buff;

white_led_alarm <= white_led_alarm_buff;

blue_led_alarm <= blue_led_alarm_buff;

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 6, June 2025

DOI: 10.17148/IJIREEICE.2025.13603

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 34

green_led_no_alarm <= green_led_no_alarm_buff;

process(digit2c, digit1c, digit0c, SW0,digit2b,digit1b,digit0b)

begin

 IF SW0='0' THEN

 digit2 <= digit2b;--first digit of ECG input voltage (units)

 digit1 <= digit1b;--second digit of ECG input voltage (10^-1)

 digit0 <= digit0b;--third digit of ECG input voltage (10^-2)

 digit5 <= digit2c;--first digit of pulses/min

 digit4 <= digit1c;--second digit of pulses/min

 digit3 <= digit0c;--third digit of pulses/min

 end if;

end process;

 WITH digit5 SELECT

HEX5 <= "11000000" WHEN "0000", -- display 0

"11111001" WHEN "0001", -- display 1

"10100100" WHEN "0010", -- display 2

"10110000" WHEN "0011", -- display 3

"10011001" WHEN "0100", -- display 4

"10010010" WHEN "0101", -- display 5

"10000011" WHEN "0110", -- display 6

"11111000" WHEN "0111", -- display 7

"10000000" WHEN "1000", -- display 8

"10011000" WHEN "1001", -- display 9

"11111111" WHEN OTHERS; -- blank display

WITH digit4 SELECT

HEX4 <= "11000000" WHEN "0000", -- display 0

"11111001" WHEN "0001", -- display 1

"10100100" WHEN "0010", -- display 2

"10110000" WHEN "0011", -- display 3

"10011001" WHEN "0100", -- display 4

"10010010" WHEN "0101", -- display 5

"10000011" WHEN "0110", -- display 6

"11111000" WHEN "0111", -- display 7

"10000000" WHEN "1000", -- display 8

"10011000" WHEN "1001", -- display 9

"11111111" WHEN OTHERS; -- blank display

WITH digit3 SELECT

HEX3 <=

"11000000" WHEN "0000", -- display 0

"11111001" WHEN "0001", -- display 1

"10100100" WHEN "0010", -- display 2

"10110000" WHEN "0011", -- display 3

"10011001" WHEN "0100", -- display 4

"10010010" WHEN "0101", -- display 5

"10000011" WHEN "0110", -- display 6

"11111000" WHEN "0111", -- display 7

"10000000" WHEN "1000", -- display 8

"10011000" WHEN "1001", -- display 9

"11111111" WHEN OTHERS; -- blank display

WITH digit2 SELECT

HEX2 <= "01000000" WHEN "0000", -- display 0

"01111001" WHEN "0001", -- display 1

"00100100" WHEN "0010", -- display 2

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 6, June 2025

DOI: 10.17148/IJIREEICE.2025.13603

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 35

"00110000" WHEN "0011", -- display 3

"00011001" WHEN "0100", -- display 4

"00010010" WHEN "0101", -- display 5

"00000011" WHEN "0110", -- display 6

"01111000" WHEN "0111", -- display 7

"00000000" WHEN "1000", -- display 8

"00011000" WHEN "1001", -- display 9

"01111111" WHEN OTHERS; -- blank display

WITH digit1 SELECT

HEX1 <= "11000000" WHEN "0000", -- display 0

"11111001" WHEN "0001", -- display 1

"10100100" WHEN "0010", -- display 2

"10110000" WHEN "0011", -- display 3

"10011001" WHEN "0100", -- display 4

"10010010" WHEN "0101", -- display 5

"10000011" WHEN "0110", -- display 6

"11111000" WHEN "0111", -- display 7

"10000000" WHEN "1000", -- display 8

"10011000" WHEN "1001", -- display 9

"11111111" WHEN OTHERS; -- blank display

WITH digit0 SELECT

HEX0 <= "11000000" WHEN "0000", -- display 0

"11111001" WHEN "0001", -- display 1

"10100100" WHEN "0010", -- display 2

"10110000" WHEN "0011", -- display 3

"10011001" WHEN "0100", -- display 4

"10010010" WHEN "0101", -- display 5

"10000011" WHEN "0110", -- display 6

"11111000" WHEN "0111", -- display 7

"10000000" WHEN "1000", -- display 8

"10011000" WHEN "1001", -- display 9

"11111111" WHEN OTHERS; -- blank display

end architecture;

https://ijireeice.com/
https://ijireeice.com/

