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Abstracts: This paper investigates how generative artificial intelligence (AI), particularly large language models (LLMs), 

can be applied to reverse engineering and code reconstruction tasks. Traditional reverse engineering techniques such as 

disassembly and static analysis are time-consuming, require deep expertise, and often fail to recover high-level semantics. 

With the rise of generative models like GPT-4, CodeBERT, and AlphaCode, there is a growing opportunity to automate 

the reconstruction of source code from binaries or legacy languages. The study explores the methodology of training AI 

on code and binary datasets, outlines the design of an AI-powered tool that modernizes legacy codebases, and identifies 

key applications in software maintenance, cybersecurity, and digital preservation. It also examines hybrid approaches 

combining symbolic execution and machine learning. The paper concludes by addressing the significant challenges in 

binary-to-code transformation—such as hallucination, lossy translation, and dataset scarcity —and suggests future 

directions for scalable dataset creation, model interpretability, and domain-specific fine-tuning. 

 

                                                                                I.    INTRODUCTION 

 

Reverse engineering plays a crucial role in software engineering, especially when dealing with legacy systems that lack 

source code or documentation. Many industries—such as banking, aviation, and government—still rely on outdated 

software written in languages like COBOL or running only as compiled binaries. Manually reconstructing or updating 

these systems is resource-intensive and error-prone. 

 

The emergence of LLMs trained on vast repositories of code opens new opportunities to automate code reconstruction. 

Models like OpenAI’s GPT, Meta’s LLaMA, and Code-specific transformers (e.g., CodeBERT) can now generate human-

readable code from structured input and even partial information. Applying these models to reverse engineering allows 

engineers to recover high-level logic from binaries or legacy formats and translate it into modern, maintainable languages. 

This research explores how generative AI can support reverse engineering by proposing an AIassisted methodology and 

tool, with emphasis on improving accuracy, developer productivity, and long-term software sustainability. 

 

                                                             II.    BACKGROUND AND RELATED WORK 

 

Traditional reverse engineering depends heavily on tools like IDA Pro, Ghidra, Radare2, and Binary Ninja, which offer 

disassembly, decompilation, and control flow analysis. However, they focus primarily on low-level representations like 

assembly code and basic pseudocode, leaving significant gaps in recovering abstract program logic, comments, 

modularization, and maintainable structures. 

 

Advances in AI and ML models for code, including Codex, CodeGen, PolyCoder, InCoder, and AlphaDev, have 

demonstrated that neural networks can generate, complete, refactor, and optimize complex code. These breakthroughs 

highlight that LLMs understand not only syntax but also semantics, algorithmic structures, and domainspecific 

knowledge. 

                                                                  

Recent research includes: 

 

 AI-assisted decompilers that post- decompiled code to improve readability. 

 Neural deobfuscation models that simplify obfuscated binaries. 

 Binary similarity detection using graph neural networks (GNNs) to match binary code to known source code snippets. 

Hybrid approaches, combining AI predictions with traditional symbolic execution or program analysis, have shown 

improved performance in recovering lost variable names, reconstructing control structures, and suggesting high-level 

abstractions. 
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III.    METHODOLOGY 

 

The proposed methodology focuses on creating a generative AI model capable of reconstructing source code from 

binaries or outdated languages. 

 

Data Collection 

 Binary-code pairs extracted from open-source projects (e.g., Linux Kernel, PostgreSQL) compiled under different 

optimization levels.  Decompiled outputs generated by tools like Ghidra for semi-supervised learning. 

 Execution traces collected via symbolic execution engines (e.g., Angr, KLEE) to capture runtime behavior. 

 Legacy code samples (e.g., COBOL, Fortran) mapped manually or via heuristics to modern languages (e.g., Python, 

Go). 

 

Model Architecture 

 A  Transformer-based LLM  like GPT-4,CodeT5+, or a fine-tuned variant. 

 Input: Tokenized disassembled binary code, augmented with control-flow and data-flow information where available. 

  Additional enhancements: 

 Positional embeddings for control flow graphs (CFGs). 

 Attention mechanisms specifically focusing on opcode sequences and memory patterns. 

 Syntax-constrained decoding to enforce compilable output. 

 

                                                                            IV.    TRAINING PROCESS 

 

 Preprocessing: Normalize binaries, strip metadata, align opcodes with abstract syntax trees (ASTs) from source code. 

 Supervised fine-tuning: Train on aligned binarysource pairs. 

 Reinforcement learning: Optimize for humanlike code readability and functional correctness through human feedback 

(RLHF). 

 Output: Reconstructed, human-readable, highlevel code (Python, Java, TypeScript, etc.). 

 

 
 

Evaluation metrics: 

BLEU, CodeBLEU for syntactic and semantic similarity. 

 Human evaluation: Expert software engineers grade quality and maintainability.  Functional equivalence: Dynamic 

testing to verify behavior preservation. 

This multi-stage process ensures the model captures both surface syntax and deep program logic, essential for high-

fidelity reconstruction. 

 

V.     TOOL DEVELOPMENT 

 

To operationalize the methodology, a user-friendly AI-powered tool is proposed. 

Key Features 

 Input: Upload compiled binaries, legacy source code, or low-level assembly. 

 Processing: AI model reconstructs high-level equivalents, optionally preserving comments, structure, and modularity. 

 Output: Clean, modern, maintainable code with syntax highlighting, version control integration, and comparison mode. 

Advanced Capabilities 

https://ijireeice.com/
https://ijireeice.com/


ISSN (O) 2321-2004, ISSN (P) 2321-5526 

 

IJIREEICE 

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering 

Impact Factor 8.414Peer-reviewed & Refereed journalVol. 13, Issue 5, May 2025 

DOI:  10.17148/IJIREEICE.2025.13516 

© IJIREEICE              This work is licensed under a Creative Commons Attribution 4.0 International License                  109 

Control-flow visualization and mapping. 

Variable name recovery and type inference. Explainable AI: Trace generated output back to binary segments. 

Example Workflow 

1.Upload .exe, .bin, or legacy .cob file. 

 

2.Select target language (Python, Java, Rust). 

3.AI reconstructs and displays editable output. 

4.Developer validates, refines, and exports final source code. 

 

Applications 

Software Maintenance 

 Legacy modernization: Convert COBOL/Assembly code to Python/Java.  Bug fixing: Identify and patch vulnerabilities 

hidden in binaries. 

 Refactoring: Improve readability, modularity, and compliance with modern standards (e.g., ISO 26262, DO-178C). 

Cybersecurity 

 Malware analysis: Accelerate decompilation and understanding of malicious binaries.  Vulnerability detection: Identify 

unsafe patterns reconstructed from binaries. 

 Patch recommendation: Auto-generate security patches based on known secure coding practices. 

Digital Preservation 

 Software archaeology: Recover critical yet undocumented industrial software.  Infrastructure rejuvenation: Rebuild 

missioncritical systems for modern cloud environments.  Disaster recovery: Salvage lost or corrupted source code in 

case of cyber-attacks or data loss. 

 

 
 

Challenges and Limitations 

Despite its promise, AI-assisted reverse engineering faces considerable hurdles: 

Legal and Ethical Concerns: 

Reverse engineering proprietary software may breach licenses or copyright laws.  Ethical implications of generating 

code for hacking or exploitation. 

 

AI Hallucinations: 

LLMs sometimes fabricate plausible but incorrect logic. 

 Need for robust verification frameworks before adoption. 

 

Dataset Scarcity: 

Lack of publicly available aligned binarysource corpora. 

 Possible solution: simulated datasets, synthetic binaries, and community curation efforts. 

functional equivalence. 

Explainability and Trust: 

Developers must trust that reconstructed code is secure, correct, and maintainable. 
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Lossy Mapping: 

Compilation is inherently a many-to-one process. 

 

VI.    FUTURE WORK 

 

Several promising research avenues exist: 

Large-Scale Datasets: 

Creation of multilingual, multi-platform binary-source datasets. 

Crowdsourcing verification of AI-reconstructed  code. 

Symbolic Execution + AI Hybridization: 

Use symbolic execution paths to guide model outputs toward behaviorally correct code. 

Model Interpretability: 

Develop explainable models that can map binary segments to specific reconstructed functions. 

Domain-Specific Fine-Tuning: 

Fine-tune models on sectors like finance, aviation, embedded systems, or military software for higher accuracy. 

Explainability and Traceability: 

Build tools that show intermediate steps of reconstruction for developer trust and auditability. 

 

VII.      RESULTS 

 

The proposed methodology was evaluated by developing a prototype tool powered by a fine-tuned CodeT5 transformer 

model, trained on a custom dataset of binary-code pairs. The primary objective was to measure how accurately the AI 

model could reconstruct source code from binary and legacy code formats and how effective this process was compared 

to traditional manual reverse engineering. 

Reconstruction Accuracy: 

To assess reconstruction quality, we measured both syntactic and semantic similarity between generated code and 

reference code using established metrics: 

Evaluation Metric.                   Score (%) 

BLEU Score                             68.7% 

CodeBLEU.                             72.1% 

Human Evaluation                  81.3%  

Interpretation: The model successfully preserved logic flow and functional intent in most cases, even in the absence of 

debug symbols. 

Real-World Use Case: COBOL-to-Python  

Scenario: Legacy financial code in COBOL was submitted to the tool. 

Output: Python equivalent with structured functions and clean syntax. 

 

VIII.     CONCLUSION 

 

Generative AI has significant transformative potential in reverse engineering and modernizing legacy software. With the 

ability to reconstruct highlevel code from binaries and outdated languages, LLMs can substantially reduce the cost, time, 

and risks associated with manual migration efforts. While legal, technical, and ethical challenges must be carefully 

addressed, a well-designed AI-powered tool —coupled with a robust dataset and validation system—can make reverse 

engineering faster, safer, and more accessible. As research progresses, AIdriven reverse engineering could become a 

mainstream practice, revolutionizing software maintenance, cybersecurity, and digital preservation. 
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