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Abstract: Cloud computing environments host sensitive data and critical systems of organizations of any size and sector.
Their security is vital and yet very hard to achieve since the technology is still at an early stage and continuously evolving.
Organizations have only limited control over the environment they use, putting them at the mercy of malicious actors.
Al can reinforce security in many ways and applied in a focused manner, it can help detect and respond to threats more
effectively at a broader level. The integration of Al helps organizations to assess data protection risk, comply with data
protection laws, and reduce the cost of compliance.

Al-driven threat detection and response combines Al model training, validation, and testing with containerization-based
operation and monitoring to automatically contain and remediate threats in near-real time of automated workflow
systems. Decision support systems rule-based or machine learning-enhanced for vulnerable domains and escalation
procedures establish human-in-the-loop conditions that balance business requirements and risk appetite with operational
overhead. The Al-enhanced approach complements, but will not entirely replace, traditional human-operated SOC
playbooks. Decision support systems with a focus on managing uncertainty can aid human operators by suggesting which
playbooks to execute next and what data to request from detection systems like threat intelligence feeds, sandboxing
solution employable on-demand, or dedicated malware analysis clusters.
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1. INTRODUCTION

Cloud Computing has emerged as an essential technology for businesses and governments, offering significant
advantages in innovation speed, cost, and flexibility. As cloud adoption grows, so too do the frequency, severity, and
sophistication of attacks on these infrastructures, exposing the limitations of conventional detection and response
methods. The vast amount of data produced by connected devices generates overwhelming amounts of threat alerts for
security analysts, leading to analysis paralysis and late-stage detection. These challenges have made the integration of
Artificial Intelligence into detection and response a promising research direction, allowing for faster and more accurate
analysis of patterns and trends, more effective prioritization of alerts, and even automation of responses.

This survey establishes a comprehensive understanding of how threat detection and response in Cloud Computing
Infrastructure can be augmented using Artificial Intelligence. It covers the common characteristics of cloud-centric threat
detection and response systems, the threat landscape in Cloud Computing Technologies, and the principles for applying
Artificial Intelligence to improve intrusion detection and response systems. Furthermore, the work outlines a set of data
collection and model training requirements and details a variety of detection techniques that employ Al in cloud
environments. The coordination of containment strategies across multiple domains and the use of Al to automate incident
response workflows are also presented.
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1.1. Overview of Cloud Security and Al Integration Principles

Achieving security objectives in cloud computing requires a principled approach to the examination of security solutions,
the threat landscape that drives their development, and the application of enabling technologies such as Al. Security
solutions in the cloud are employed to detect breaches or misconfigurations in real time, predict impending incidents, or
mitigate damage. Properly operating security measures help the enterprise maintain the availability, integrity, and
confidentiality of cloud-hosted data and services. Al serves as a powerful enabler with application domains that align
well with achieving the cloud security goals. Al algorithms can analyze large amounts of data, find subtle patterns
undetectable by human operators, create ever-evolving baselines for normal activity, prioritize incidents based on risk,
assist security operators with the workload, and automatically contain, mitigate, or remove attackers.

Despite the advantages Al offers, it also presents serious challenges that must be addressed in Al-driven security
solutions. Furthermore, the security of the Al components themselves must be assured; for example, data integrity, model
robustness, and availability are essential for reliable detection and prediction. Al-powered security solutions aim to reduce
human error, lower false positives, increase threat intelligence coverage, automate repetitive tasks, and minimize response
time. Although these advantages are alluring, establishing enterprise-wide Al initiatives is often more concerned with the
questions of data governance and organization than with the technology itself. Without appropriate processes, practices,
and controls, Al-driven security technology can become just another layer of complexity that decreases the effectiveness
of security operations. Proper management of data governance, compliance, risk management, privacy, and trade secret
protection is imperative for a successful Al initiative.
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Fig 1: Beyond the Algorithm: Integrating Al-Driven Cloud Security with Robust Data Governance and Risk
Management

2. FOUNDATIONS OF CLOUD SECURITY AND Al INTEGRATION

Research into a wide variety of use cases, malicious actors, and attack patterns demonstrates that the mere security
principles of Confidentiality, Integrity, and Availability are not sufficient for cloud infrastructures: cloud vulnerabilities
must be explored and analysed within specific areas of security complemented with other important aspects like
performance, usability, scalability, compliance, control, and governance. In particular, data security and privacy being
the main challenges in public cloud security, organisations should maintain governance over their data and the security
of user transactions. Prevention strategies in business continuity, disaster recovery, etc. should guarantee data continuous
availability.
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Despite security as the primary concern deterring enterprises from adopting cloud solutions, these platforms have become
the target of choice for malicious users. Security incidents in the cloud continue to grow and happen regularly, demanding
investigation to uncover the vulnerabilities exploited and whether the security services provided by the provider and
security strategies employed by the tenants were effective. Their number and the scale of the breaches provide supporting
evidence that the threat landscape of cloud computing is changing, not only increasing in volume but also being affected
by a shift in the attack surface, with new attack vectors appearing that are specific to cloud solutions. Tactics, Techniques,
and Procedures (TTPs) categories are being created to reflect and assist organisations in mapping the malicious patterns
observed in the cloud platform environment.

Equation A) Supervised threat classification

1) Logistic model — probability of “attack”

Let features for an event be x € R (from cloud telemetry ).
Assume a linear score z = w'x + b. Convert score to probability:
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2) Cross-entropy loss (training objective)
For binary labels y € {0,7}, predicted p = o(z2).
Likelihood per sample:
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3) Decision threshold (ties to “risk appetite / escalation”)
Convert probability to alert:

2.1. Threat landscape in cloud environments
A multitude of threats born of vulnerability in parts and layers shape the reputation of Cloud environments. Hosts, storage
services, systems and networks supporting distributed services are susceptible to versatile threats due to the multi-tenancy
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nature of Cloud services. Such threats are difficult to attribute because of the immense range of actors involved. Major
disruptions of the Cyber security in the last decade have underscored the need to gain a better understanding of risks and
an improved Air Traffic Control, increase the accountability of distributed Cyber operations and reduce their impact. A
better understanding of the threat landscape, naturally, is a precondition.

A comprehensive set of Cloud threats highlights the pertinent areas and actor capabilities for development of specialized
Cloud Cyber Safety and Defence systems. A wide-ranging reference matrix recognizes Cloud threats, organized by their
attack surface, Actors and recent incidents. The threats vary greatly in impact and likelihood, supply and demand-driven
growth can be seen in some, such as hybrid warfare, and forensics research into mitigation is still scarce.

2.2. Principles of Al-driven defense

Artificial intelligence finds application in various phases of the security lifecycle. For detection, it explores across
domains such as anomaly-based intrusion detection, malware detection, and spam detection. For prevention, collaborative
Al systems can predict new malicious web servers by examining their DNS and WHOIS characteristics. In the context
of response, automated playbooks help orchestrate the containment and remediation of incidents. Al also acts as an
assistive tool by augmenting decision-making for human analysts during investigations and incident responses.

Three core requirements emerge from the proposed and implemented Al-driven detection and response techniques. First,
detection techniques need labeled datasets for training. Such datasets are often scarce, especially in security domains with
few or no labeled incidents, such as fraud detection and insider threat detection. Second, prediction-based techniques
require combinations of data types that are often not available and, when they are, result in complex labels. For example,
combining external threat intelligence with distinct internal contexts, such as asset criticality and classification categories,
allows for richer and more targeted prediction. Finally, containment and remediation techniques must support
organizations' dynamic and disruptive playbooks. Playbook requirements also span across domain boundaries, enabling
auxiliary domains to assist the affected domain's containment and recovery through proactive measures.
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3. ARCHITECTURAL FRAMEWORKS FOR AI-POWERED DETECTION

Principled reference architectures guide the development of cloud security solutions that are augmented with advanced
Al techniques for threat detection. While the basic structure varies depending on whether incident data are monitored,
modeled, or predicted, all rely on known legitimate behavior for context and ground truth. Threat intelligence is integrated
for incident response with search and orchestration capabilities.

Guided by security goals, detection systems are enhanced by the detection, prediction, and response paradigms of Al to
realize continual detection, behavioral monitoring, and automated workflows, thereby addressing analysis or response
time concerns. Each of these inverse cycles requires considerable amounts of data, with the training process more
computationally intensive. Once trained, the detection or response models must be monitored for both accuracy and drift.

3.1. Data collection and feature engineering in the cloud

Information crucial for Al-driven threat detection can be drawn from numerous sources within cloud environments. Data
quality—covering quantity, variety, representativeness, relevance, and timeliness—determines predictive model
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performance. Extensive logging, monitoring, and telemetry are common in cloud infrastructures and customers can adapt
them according to in-provider service agreements. However, data labeling poses challenges, given that both malicious
and benign traffic are infrequent events in certain environments.

Labeling can therefore be avoided in different stages of the threat-detection process, using unsupervised or semi-
supervised techniques. It is essential to mine the wealth of telemetry produced security as a bias present in these systems
can result in undetected or mislabelled moments. Data-friendly representation of the entities, resources, and activities in
the environment is key to transition between these records. Cloud providers often host sensitive, private or regulated data.
Security and privacy-preserving techniques such as data masking or anonymization should be carefully considered,
especially when integrating external threat intelligence feeds.
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Fig 2: Optimizing Al-Driven Cloud Telemetry: A Multi-Dimensional Framework for Privacy-Preserving Threat
Detection and Label-Efficient Learning

3.2. Model training, validation, and deployment

A non-trivial challenge in developing Al-powered detection and response capabilities is training the models that power
them. Data is most often limited to a fraction of the total space, and serious consideration must therefore be given to data
quality and the nature of the classification problem being addressed. Developing effective Al solutions using supervised
learning therefore requires creating and maintaining pipelines that span the entire process of data collection, integration,
quality assessment and improvement, model training, and monitoring. Monitoring should include not only the resulting
model performances, but also target distributions, data drift, and the underlying data quality. Finally, given that the
resulting classification decisions will be used to drive automated playbooks, the opportunities for bias should be carefully
evaluated.

The first step in training a supervised model is preparing training data that is as large and representative as possible.
Depending on the target detection challenge, a training set may also need to incorporate a variety of label noise types,
since bug reports and known security incidents are generally the best effort. The training data should subsequently
undergo a monitoring pipeline built around data quality assessment, and where necessary, data correction and data
augmentation. In many cases, particularly sensitive detection models may benefit from a dedicated validation set. For
detection models that are applied over a long time span, regular retraining pipelines should also be established, even if
it’s just against a training set containing a collection of more recent events.

4. THREAT DETECTION TECHNIQUES POWERED BY Al

Recent years have witnessed a marked growth of cyber threats affecting cloud environments. Cyber-attackers are
increasingly leveraging the cloud for their operations, taking advantage of the higher level of anonymity and flexibility
in the use of cloud resources. As a result, new cybercriminal groups and data breaches have emerged. Traditional rule-
based approaches are facing difficulties in detecting advanced threats in real time. Manual detection is inaccurate, time-
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consuming, and resource-intensive. These factors have driven researchers and practitioners to focus on automating the
detection process. While many tasks are being automated through the use of simple heuristics, the final decision is often
manual. Artificial intelligence can greatly improve detection accuracy and enhance detection and response coverage by
automating all tasks, including decision-making.

Acrtificial intelligence is not a single approach, but rather an umbrella term for various machine learning, data mining,
and optimization techniques that learn from experience. In particular, recent advances in anomaly detection, security
information and event management, threat intelligence enrichment, attack path prediction, and security orchestration have
gained traction. These techniques provide a variety of stand-alone products and services to enhance detection and
response coverage. Anomaly detection discovers previously unseen threats, while threat intelligence correlates known
threats across multiple data sources. However, these capabilities are often provided in silos, leading to information
overload and incorrect, late, or missed alerts.

4.1. Anomaly detection and behavioral analytics

Both of these contradictory paradigms can fall outside the normal zone of operation of the cloud service system but
indicate an event that was unexpected and may reveal a new exploitable vulnerability. Defining what constitutes expected
normal operation is not a straightforward problem. The security event can be analyzed based on simple metrics or
classification for single users and equipment, or it can be labeled by sophisticated statistical techniques, based on
variances and co-relations of multiple variables. Complex Machine Learning (ML) and Al detection algorithms may also
be used to classify what may be a normal operation in the moment it occurs.

Anomaly detection has a wide range of applications in information security, and the possibility of statistical baselining
opens a new paradigm for their supervised or semi-supervised anomaly classification with limited human labeling or
feature engineering requirements. The classification, however, will often be highly skewed. The features for determining
anomaly classifications must be chosen carefully, as in order for a specific anomaly detection model to operate
satisfactorily it needs to support detection with true positives showing very low variance from the normal data distribution
and the false positives in the normal region having a very high variance from the normal data distribution.

Equation B) Confusion matrix metrics
Let:
e TP: predicted attack & truly attack
e  FP: predicted attack but benign
e TN: predicted benign & truly benign
e FN: predicted benign but attack

Then:

.. TP TP 2-Precision-Recall
Precision = —— Recall = Fl =———
TP+FP TP+FN Precision+Recall

Step-derivation of F1 form (harmonic mean):

2 2ab 2PR
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4.2. Threat intelligence integration and correlation

Harnessing threat intelligence sources brings additional context for threat detection within cloud environments. Public
resources, such as the Mitre Att&ck framework, Common Vulnerabilities and Exposures (CVE) database, or the OWASP
Top Ten, encode expert knowledge on the methodology of different types of attackers. Indicators of Compromise (1oC),
for instance, are additional artifacts typically left behind by cybercriminals and can take many forms, including software
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hashes, malicious URLSs, or indicators of phishing attacks or bots. They can be used to enrich other detection mechanisms
or to trigger detection or alerting rules when seen in isolation and may also be available from commercial sources for a
fee.

With a clear understanding of both the supported attack vectors and the relevant 10C, cloud environments dedicated to
defense can ingest these indicators and automatically enrich their datasets with a source for a specific attack. Further
correlation mechanisms may then be defined to combine several sources of data into a single event, enabling automatic
detection in the case of a match, or to use the indicators as a decision threshold when a more specific alert is raised, such
as machine learning classifying a file as malicious. Integrating these capabilities into existing detection workflows
enhances the accuracy of threat detection while enabling a more holistic exploration of supporting datasets.

5. AI-DRIVEN INCIDENT RESPONSE AND AUTOMATION

Manual detection and containment of cloud threats can be slow and ineffective due to limited human resources.
Containment typically requires orchestrating multiple security tools, while remediation often has to wait for incident-
response teams' attention. Playbooks for common threats can automate these processes, automatically executing
containment and damage-mitigation steps and queuing more extensive remediation for later. Integrating detection and
response facilitates wider decision support and enables fully automated containment of lower-risk alerts.

Orchestration coordinates containment and remediation. Such playbooks encompass bidirectional integration between
products—accepting both events and command requests—and engage multiple domains of security operations, such as
network, endpoint, and cloud workloads. Detection-oriented playbooks can be triggered by novel decisions, enabling
quick reactions to newly observed attack techniques.

Further automation can relieve some of the burden on incident response teams. Automated playbooks execute
containment and damage-control actions dictated by correlation alerts, while decision-support systems help incident-
response operators analyze incidents, identify root causes, and plan repair strategies. Templates for frequently occurring
alerts can also be defined, escalating only unexpected cases, where support would add significant value. Rule-based
systems can provide more generic guidance, indicating useful steps based on attack-path analysis, while machine-learning
models trained on prior incidents can suggest the most appropriate responses. A human operator may still check and
approve any suggested actions, balancing speed and accuracy.

5.1. Orchestration of containment and remediation

Incidents are contained and remediated with playbooks that describe decision-making rules and associated workflows.
Containment orchestration automates the interaction with affected systems—infrastructure as code (1aC) templates may
spin up, yank down, or modify instances or clusters, while maintenance commands can be issued for managed services.
Content is ingested for security protection, and malicious sets can be removed or quarantined. Enrichment data is also
usually provided through third-party orchestration platforms integrated with supported cloud platforms. Consolidation
and correlation of indicator data usually follow the skin-layers-and-bacon pattern (tackled first, then those that are actually
bad) for priority processing of incidents. For example, public IPs described in feeds by malware control groups are assets
of priority interest for redirection. Playbooks often close the attack loop, querying malicious source addresses in relevant
analytics data stores to answer questions like "have they attacked others, are they successful,” and "are the sites still up?"
Cross-domain coordination is involved in cross-platform scenarios such as connection termination logging to a web
application firewall (WAF) while alerting a contact center via chat. Alert quality tends to decrease with increasing
connectivity breadth and the introduction of bots, so human interdiction may still be preferred for processes like incident
communication even with the provision of pre-filled message content. Automation is usually not yet viable for response
to advanced or unknown threats; decision-support aids apply causation rules to recommend appropriate steps. Supervised
detection is also likely more useful than pure replay of past incidents: escalation triggers if a small instance uses more
than 10% of its memory or CPU in a 1-minute window, and plays are executed only when data led by that host or IP flag
an alert at least once and in a positive sense. To assist with executive communication on major risks or breaches, scripts
collate information from threat intelligence feeds.
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Fig 3: Orchestrated Incident Response in Hybrid Cloud Environments: A Framework for Automated Containment
Playbooks, Cross-Domain Coordination, and Human-in-the-Loop Decision Support

5.2. Automated playbooks and decision support

Automated playbooks and decision support systems automate workflows in the containment and remediation phases for
commonly encountered incidents. At the containment level, rule engines enabling automated action are complemented
by playbooks defined in orchestration platforms. During the remediation phase, local incident resolution systems, like
Azure Security Center, and graph-based environments recommend adjustments to mitigate persistent threats. Machine
learning models may also act as decision support aids for human operators, suggesting actions or flagging unusual
conditions. Automated playbooks and decision support systems incorporate additional considerations, such as escalation
automation, avoiding interruptions unless justified, and the role of human operators in the loop.

Implemented playbooks continuously, automatically, and collaboratively supervise control-plane activities across several
domains by scheduling specific tasks and automatically executing the required API calls. As actionable information is
produced, orchestration platforms match this output against the library of playbooks. When a match is found, the relevant
playbook is triggered, and its execution automatically coordinates the orchestration of controls across multiple areas.
Detection or classification of an unusual situation can initiate the relevant escalation procedure or recommend a suitable
action to a human operator. Filtering and suggestion functions may minimize the overhead of supervision of alerts or
contextual information to be evaluated and enhance the quality of the final decision.

6. PRIVACY, GOVERNANCE, AND COMPLIANCE IMPLICATIONS

Data governance for Al security solutions addresses data stewardship, access controls, retention periods, data provenance,
and auditing capabilities, ensuring data used in Al threat detection and response is well managed throughout its lifecycle.
In support of the recommendations governing phases of the machine learning pipeline, the data governance framework
considers in greater detail the organization’s internal mechanisms for collecting, storing, processing, and making
available data. Additionally, as part of semi-automated or fully automated playbooks, Al-generated decisions require
auditing mechanisms. Decision thresholds built on security experts’ intuition can later be adjusted according to the risk
tolerance of the organization.

Al-enhanced detection and response capabilities should be aligned with industry standards and risk management
frameworks relevant to the organization’s sector or with regulations that require security measures—such as PCI-DSS,
HIPAA, NIST, ISF’s Standard of Good Practice for Information Security, ISO 27001, and others. The selected standards
and risk management framework provide guidelines on cloud service provider security but do not specify how
organizations should protect their data, applications, and services in the cloud. Therefore, datacenters hosting sensitive
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with the relevant standard. Compliance requirements often include a third-party compliance audit, and several cloud
service providers undergo these audits and publish service control reports to provide guarantees to customers.

MainNo | anomaly | intelligence | governance
1 0.0 14.02 0.0

2 0.0 0.0 8.85

3 0.0 8.13 0.0

4 8.89 17.78 0.0

5 0.0 0.0 0.0

6 0.0 0.0 8.62

6.1. Data governance for Al security solutions

Data governance encompasses policies and processes supporting consistent handling of sensitive data such as personally
identifiable information (PI1) or payment card information across systems and business functions. Specialized governance
is essential for Al-enhanced security solutions because these rely on datasets sourced from diverse business functions or
external partners, and because observed data often contains sensitive information. Organizations therefore need to
establish and embed governance processes that effectively balance the operational need for Al data with requirements
for sensitive data stewardship and protection.

Such governance must explicitly address data access, stewardship, retention, and auditability. The organization should
define roles and impose safeguards, ensuring sensitive data is only accessible to individuals with a legitimate need to
know. Retention periods must align with organizational policies and applicable external obligations such as the European
Union's General Data Protection Regulation. Provenance must be captured to identify the parties responsible for
collecting, transferring, transforming, or labeling datasets. Furthermore, organizations should leverage existing auditing
capabilities or protocols to track dataset usage patterns and hold users accountable when necessary.
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Equation C) Anomaly detection baselining

1) Univariate z-score anomaly

Baseline “normal” mean y, std . For observation x:
4, Center:x —u

5. Scale: divide by o
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Flag if |z| = k (e.g., k = 3).

2) Multivariate anomaly (Mahalanobis distance)

If event has vector x with normal mean u and covariance 2':
1. Difference:d =x—u
2. “Whiten” using covariance: X~/

3. Quadratic form:

i = =W (x = )]

If data is approximately Gaussian, D7, ~ x> (d) under normal behavior, so choose threshold:

|flag if D}y > X3, /-]

6.2. Compliance with industry standards and regulations

Implementing Al technologies for cybersecurity in cloud environments also entails fulfilling requirements established by
industry standards and regulation frameworks. Security controls addressing cloud security challenges can be mapped to
standards such as the NIST Cyber Security Framework and the NIST Special Publication 800-53, among others. Indeed,
audit requirements are defined by various security control frameworks because existing cloud services may be certified
against these standards using third-party audit assessments.

Organizations planning to run Al-driven security solutions must prepare their Internet-accessible assets for external audits
and comply with related assessment processes. Other models require regulatory compliance, e.g., credit card data handled
in the cloud must comply with the Payment Card Industry Data Security Standard, and personal data of European Union
citizens must comply with the General Data Protection Regulation. Al-driven cybersecurity services must, therefore,
contain proper privacy requirements and controls that enable compliance with these sector-specific regulations.

7. CONCLUSION

The expected outcome of this exploration is a theoretical framework delineating security principles in cloud computing
infrastructures and a compendium of Al-based threat detection and response capabilities addressing these principles.
Holistic Al-enhanced cloud security remains a developmental challenge, with architectures, models, and data
requirements established but seldom integrated. Al-driven detection remains a research endeavor; focused techniques
substantiate predictive capacities and automation potential yet lack maturity. Privacy and governance considerations have
received little attention. Investigating the amalgamation of established frameworks can support deployment and
governance, guiding evolution toward comprehensive Al-augmented cloud protection.

Al-powered detection and response systems help organizations safeguard their cloud resources and encapsulate the two
core Al roles in cloud security. The initial direction channels detection and response capabilities, while sophisticated
approaches devote attention to prediction. Controls supporting these activities include prevention countermeasures. These
preventative measures alone do not establish full protection; they need to be complemented with advanced detection
systems that can analyze events and indicate the presence of a real attack. Integrating all these components will enable
organizations to deploy the playbooks needed for executing a containment and response plan.
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7.1. Summary and Future Directions in Al-Enhanced Cloud Security

Research confirms that futureproofing cloud-native services does indeed necessitate smart technologies capable of
minimizing threats and incidents through automation. This promises not only enhanced security efficacy, but also more
effective use of human expertise. Indeed, if correctly governed, deploying Al solutions capable of learning from past
incidents would enable enterprises to consolidate expertise from many sources and replicate it across the organization,
especially in areas where skill shortages are often felt, such as in cybersecurity. Nonetheless, to avoid early hype cycles,
occasions when cloud native services are perceived as ever greater collaborative and agile ecosystems bursting with new
opportunities, deployed Al solutions do remain fragile and constitute a double-edged sword. Effective Malicious Use
Prevention (MUP) thus requires sound data governance policies and operating procedures, addressing aspects such as
data stewardship, access control, model protection, retention, provenance, model audit and explainability.

Conversely, the lack of security controls within the cloud space does not go unnoticed. The emergence of industry
standards such as the Cloud Security Alliance Cloud Security Maturity Model and the Cloud Controls Matrix, the
implementation of risk management approaches in compliance with well-accepted standards such as the National Institute
of Standards and Technology Cybersecurity Framework, and the adoption of the International Organization for
Standardization International Electrotechnical Commission 27001 management framework allow organizations to
express maturity in terms of risk management and internal control. However, no mapping between RIMs addressing
external threats and loss prevention has been achieved yet. The research catered to this identified requirement, focusing
on the Security domain of the CSA Cloud Security Maturity Model. In conclusion, reinforcing Al-induced systemic
vulnerabilities is a clearly emerging requirement of today's complex architecture.
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