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Abstract: The mission of intelligent transportation systems (ITS) is to enhance transportation safety, efficiency, mobility, 

and sustainability through the integration of data from multiple sources. Despite the celebrated success of artificial 

intelligence (AI) in development and commercialization, its growing capacities, accessibility, and affordability have not 

been capitalized on in ITS. This is due partly to the lack of comprehensive and clearly delineated means for infrastructure 

provision, timeliness, and system continuity—especially in maintenance, operations, and expansion—and partly to the 

underlying data fundamentals. AI engenders unprecedented opportunities for transportation solutions by providing its 

own data engineering. Examination of AI-Powered Data Engineering methods reveals the enabling means of AI-based 

data engineering for ITS. 

Data engineering encompasses the core functions for the acquisition, preparation, and deployment of data suitable for 

analysis and modeling. Like the broader IT domain, AI-Powered Data Engineering for ITS operates on a foundation of 

data acquisition and ingestion; integration and interoperability; architecture; optimization; security; governance; agency; 

and deployment. The function for data acquisition and ingestion serves the dual purpose of ingesting system-based 

information—such as from traffic signals and detection cameras used for system administration—as well as supporting 

predictive models for demand and congestion forecasting conversation systems for route planning and incident 

mitigation. 
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1. INTRODUCTION

 

Having introduced the study, foundations of AI-powered data engineering, and data architectures specifically developed 

for Intelligent transportation systems (ITS), the chapter now focuses on how AI methods, combining deep learning with 

data acquired from physical processes, can analyze and utilize the data in transportation optimization tasks like predictive 

demand modeling, congestion modeling, computer vision for infrastructure and vehicle status monitoring, and sensor 

fusion, thereby assisting automation in ITS. The chapter further addresses social aspects of AI data engineering, including 

data governance, privacy, ethics, bias, and fairness, before investigating lifecycle management of analytical models in 

ITS using MLOps principles. 

AI-powered data engineering can be seen as a set of functions that shape raw input data acquired from various sources 

into a form that is suitable for model training and inference. These functions are typically not the main business value-

creating part of the system but an enabling factor that allows knowledge discovery for the business use case. AI model 

serving refers to the function that executes trained models with operational data. As in enterprise data engineering, these 

functions need to be performed as efficiently, smartly, and cost-effectively as possible. 

 

1.1. Overview of the Study 

Innovative digital technologies are radically changing the way in which we live and conduct day-to-day activities, 

including working, traveling, shopping, obtaining services, and recreational experiences. This new digital society has the 

potential to enable more efficient, sustainable, and equitable use of resources and services, including the road 

transportation infrastructure. However, this potential is often hindered because the vast amount of data generated through 

these activities are employed in an ad hoc manner with little or no global coordination. 

Artificial intelligence (AI) has the potential to play a fundamental role in exploiting these data to optimize city life in 

many different aspects. Whether it is predicting the places and times where taxi or ride-sharing services are needed or 

the areas where traffic congestion is likely to occur, AI algorithms require a large amount of trustworthy data to be 

successful. Intelligent transportation systems (ITS) focus on the data generated by transportation activities and how they 
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can be acquired, integrated, and exploited to optimize all kinds of transportation services by both private companies and 

municipalities. Investment in ITS infrastructure enables a much more accurate and complete set of data to be produced 

and made accessible for exploitation by traditional AI means. 

 
Fig 1: Synergizing Artificial Intelligence and Intelligent Transportation Systems: A Framework for Data-Driven Urban 

Optimization and Infrastructure Sustainability 

 

2. FOUNDATIONS OF AI-POWERED DATA ENGINEERING 

 

Quality assurance has often focused on assessing the output of data science and analysis techniques for specific 

applications rather than on data engineering, even though the success or failure of any AI solution depends largely on the 

quality of the input data. AI-enabled applications must therefore be complemented by upfront AI-supported data 

engineering that recognizes the importance of trustworthy data, the costs that need to be incurred to obtain them, and the 

technologies that make the data preparation processes more efficient. 

With their inherent complexity and heterogeneity, the data components required for intelligent transportation systems 

(ITS) (i.e., components that address safety, efficiency, sustainability, equity, and/or citizen wellbeing in the management 

or use of transportation systems) are themselves part of a data engineering challenge. Ample data sources are available 

for ITS, many of which can have their value enhanced by exploiting information from other sources. Efficient solutions 

exist to integrate data from different data sources, allowing for responding to queries that require information resident on 

different databases. A different form of data engineering focuses on accelerating the preparation of the input data streams 

for any AI pipeline. Most such approaches leverage data engineering techniques that enable distributed disposal of raw 

information, aggregation with lower requirements for complex queries, improved cost efficiency, or distribution of 

processing requirements to nodes operating closer to data sources. 

 

timestamp actual_demand predicted_demand event_flag 

2026-01-16 00:00:00 130.1 130.1 0.0 

2026-01-16 01:00:00 121.1 129.0 0.0 

2026-01-16 02:00:00 144.4 124.6 0.0 

2026-01-16 03:00:00 141.4 142.5 0.0 

 

Equation 1) Data ingestion and time indexing (streaming ITS data) 

The highlights streaming/time-series ingestion for low-latency prediction . A standard formalization is: 

1. Define a discrete time index: 
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𝑡 ∈ {1,2, … , 𝑇} 

2. Let the raw sensor stream at time 𝑡 be a vector (speed, counts, weather, incidents, etc.): 

𝐱𝑡 = [𝑥𝑡
(1), 𝑥𝑡

(2), … , 𝑥𝑡
(𝑑)]

⊤
 

3. If you maintain a rolling window of length 𝐿 for prediction, the model input is: 

𝐗𝑡−𝐿+1:𝑡 = [𝐱𝑡−𝐿+1, … , 𝐱𝑡] 

2.1. Data Acquisition and Ingestion in ITS 

Data acquisition and ingestion comprise the use of sensors and systems to collect, store, and make available, for real-

time and analytics, the data needed for Intelligent Transportation System (ITS) operations. An ITS collects, processes, 

analyzes, and makes available data for deployment of ITS services, including for their AI methods. Data for these services 

originate from different sources, including automated traffic surveillance, vehicle positioning, popula-tion and vehicle 

movement models, prediction of events such as accidents, planned maintenance on the roads, public transport schedules, 

and drivers themselves. These data sources may follow different data standards and formats. Their data must be 

appropriately integrated, made interoperable, and stored. 

Real-time data acquisition in an ITS is usually defined in the context of centralized traffic management and relies on 

detection of vehicle presence and/or classification along the road. However, (a) traffic issues are detected more and more 

often with the help of drivers, and (b) the definition of real time may differ depending on the adopted ITS services. 

Emerging vehicle-to-everything technologies open new opportunities to create intelligent transportation systems through 

merging traffic management services, vehicular ad hoc networks, and intelligent transportation applications. Emerging 

communication technology allows for transferring telemetry data to the cloud, learning traffic patterns and anomalies to 

provide predictive insights to fleets and transportation as a service solution providers. 

 
 

2.2. Data Integration and Interoperability 

Achieving data interoperability—understood as the ability of systems to exchange and use data in a meaningful way—is 

essential for enabling data sharing within multi-party environments. A common approach is to create an interoperable 

data model that defines an integration schema that can be used to collect and connect data from disparate data sources. 

Such data models can take the form of ontology-based models, semantic rules, or domain-specific linked open data. In 

the context of ITS, numerous ontologies have been defined to facilitate data sharing among stakeholders operating in a 

specific domain (e.g., vehicle sensors, behaviors of nearby vehicles, board-based driver behavior), ensuring semantic 

alignment during integration. 

Using distributed data hubs allows stakeholders in a federated setup to ‘publish’ their data while enabling other 

stakeholders to discover, access, and use those data sources. When the usage patterns of data are known to some degree, 

stakeholders can use the federated data source to compute analytics for data aggregation or event correlation before 

publication with an MDM model. Stakeholders should also create constraints on their published data to avoid the 

unprincipled use of sensitive information, for instance, to infer the potential movements of nearby vehicles and their 

drivers. Recent advances in knowledge graphs are also expected to help ITS data integration for service provisioning. 

 

3. DATA ARCHITECTURES FOR INTELLIGENT TRANSPORTATION SYSTEMS 

 

To reap the full benefits of emerging AI methods, data engineering in ITS should also consider the design and 

implementation of the underlying data architecture. Therefore, an overview of common data architectures is necessary to 

identify those whose properties best match the requirements of analytical pipelines for transportation-related data. These 

requirements are shape of the data (temporal, spatial, modal), freshness and update frequency, processing granularity, 

query styles, data processing operations and load, and, especially, distribution. 

Three types of data architecture and processing approach are frequently used in current ITS applications. The first 

concerns distributed data hubs based on a flight information management system (FIMS) architecture for federated data 

management, such as the Integrated Transportation Information System in Taipei, Taiwan. The second is a real-time 
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streaming architecture, as in the swarm intelligence model of Beijing’s Traffic Management and Control Center. The 

third involves linked open data (LOD) or similar approaches, frequently adopted by European cities in their deployment 

of smart-city services. Data engineering for ITS should further extend beyond these three types of architecture to realize 

the full potential of its data resources and encompass a wider range of AI methods—from supervised methods all the way 

to self-supervised and unsupervised learning. 

 

3.1. Distributed Data Hubs and Federated Architectures 

Federated Data Hub Architectures are envisioned to enable the deployment of local transportation use cases in a multi-

organizational environment without centralized storage of data at a third-party operator location. Local data incorporating 

sensitive private information can remain within the control of the data owner while still allowing privately sensitive data 

to remain protected. Instead of centralizing sensitive data for a global model training objective, the proposed approach 

relies on a two-tier connectivity structure where local models are trained per geographical area. Local models are jointly 

trained through aggregating the communicated weight updates in a federated learning fashion. The trend toward Electric, 

Shared, Connected, and Automated Mobility (ESCAM) further emphasizes the growing need for viewing vertical 

transportation domains as an integrated system. Alongside accommodating the growing number of end-user units such 

as electric vehicles or shared fleets, catering for the intelligent logistic segment. This later implies serving logistic end 

users in a proactive way as opposed to the conventional approach based on re-active approaches such as traffic signal 

coordination. A Data Hub Architecture is proposed for the Connected and Automated Mobility (CAM) segment with the 

goal of assimilating vehicle as a sensor paradigms, ideally integrating data from Connected Vehicles (CV), logis tic 

aggregators, Cloud-Based PLC, and Cloud-Based Road-Side Units (RSU). The Data Hub provides an integrated data 

source for training Computer Vision models at intersections. A real-time streaming architecture for connected transport 

and logistics safety is also proposed. The architecture aims to continue feeding vehicle as a sensor datasets on-camera 

detect able events such as accidents, traffic jam, road blockage, road anomaly, and re-routing of vehicles (if AVs, near 

to decision point). In the long-term, the architecture provides a system at the level of road infrastructure that supports the 

operation of intelligent traffic systems. 

 
Fig 2: Federated Data Hubs for Connected and Automated Mobility: A Privacy-Preserving Architecture for Integrated 

Logistic Proactivity and Real-Time Event Detection 

 

3.2. Real-Time Streaming Architectures 

Real-time streaming architectures support data applications that rely on low-latency data ingestion and serve short-term 

decision-making, including navigational map updates, real-time congestion prediction, and incident detection. These 

applications require immediate situational awareness, and model predictions are only reliable for a limited time horizon. 

The incoming data stream typically consists of a continuous flow of time-series data and enables trained machine-learning 

models to produce predictions in real time. 

As described in Section 4.1, a dedicated model is not needed for every single prediction, as data from multiple predictions 

can be processed using the same model. To minimize prediction latency, Seaview uses a one-to-many model for 

commuting-demand prediction, which serves the multiple short-term predictions of bike-sharing demand over the same 

prediction horizon and at low latency. The model takes into account predicted traffic incident locations, which allow it 

to capture demand anymore accurately. In the case of incident detection, it is important to react as quickly as possible 
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when abnormal patterns emerge. For patterns such as major traffic jams, dedicated model ensembles that are trained only 

for incident detection are applied instead of the original real-time demand-prediction model. 

 

4. AI METHODS FOR TRANSPORTATION OPTIMIZATION 

 

A variety of AI methods optimize intelligent transportation systems (ITS) as a service ecosystem through predictive 

modeling of demand and traffic flow congestion—two key capabilities for effective incident detection—and through 

computer vision and sensor fusion to monitor vehicles and detect road and infrastructure conditions. New mobility 

services, such as ride-hailing and micro-mobility, induce changes in traffic patterns and contribute to urban congestion. 

City authorities require real-time visibility into these dynamics to take proactive measures; for instance, predictions are 

needed to place demand-responsive buses and share road-space efficiently with micromobility. Methods benchmarked 

in the literature include Probabilistic Latent Graph-Trace Model, Tree–LSTM, graph neural networks, isotonic 

regression, and spatio-temporal convolutional neural networks (STCNN). 

Understanding traffic flow is crucial to maintaining road network performance. Congestion at intersections causes travel-

time delay, dramatically increasing operating costs for freight carriers. Avoiding congestion in high-density areas 

contributes to a competitive and attractive freight-mode service. Incident detection relies chiefly on historical traffic 

conditions; an accurate real-time classification enhances performance. Demand forecasting captures short-term demand 

changes and identifies fluctuation patterns. Variational Recurrent-Dynamic-Factor models are applicable, for example, 

to plan rescaling of a bike-sharing system to minimize operating costs, boost user satisfaction, and generate revenue. 

 
 

Equation 2) Short-term demand forecasting (supervised learning) 

The discusses demand forecasting and short-term fluctuations . 

Goal: predict demand 𝑦𝑡+ℎ (e.g., trips next hour) from recent history and context. 

Step 1: Define target and features 

• Target: 𝑦𝑡+ℎ 

• Features: 𝐗𝑡−𝐿+1:𝑡 and optional context 𝐜𝑡 (events, incidents, weather) 

Step 2: Choose a parametric model 𝑓𝜃 

𝑦̂𝑡+ℎ = 𝑓𝜃(𝐗𝑡−𝐿+1:𝑡 , 𝐜𝑡) 

Step 3: Define loss (MSE example) 

Over training samples 𝑡 ∈ 𝒯: 

ℒ(𝜃) =
1

|𝒯|
∑(𝑦𝑡+ℎ − 𝑦̂𝑡+ℎ)

2

𝑡∈𝒯

 

Step 4: Optimize 

𝜃∗ = argmin
𝜃
ℒ(𝜃) 

 

4.1. Predictive Modeling for Demand and Congestion 

Machine learning pipelines trained on historical data help detect anomalous demand and congestion patterns for road 

agencies and municipalities. Data about vehicle counts, speeds, weather, road closures, and events can help machine 

learning pipelines recognize patterns in congestion. Forecasting models can predict these congestion hotspots to support 

early traffic congestion management, allocating resources and adjusting signals as needed to mitigate congestion. 
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Travel demand and vehicle origin–destination (OD) flows can also be modeled using machine learning. Estimating OD 

flows helps optimize public transit services, and support money-minding proactive deployments of high-occupancy-

vehicle lanes, bus lanes, and more, wherever such resources could bring the maximum possible benefits. Such estimations 

can also help practice money-minding proactive allocation of parking resources. When combined with a well-trained 

traffic simulation model, such OD-estimating pipelines can improve money-minded long-term infrastructure planning by 

helping to identify future-demand evolution patterns. 

 

4.2. Computer Vision and Sensor Fusion for Vehicle and Infrastructure Monitoring 

AI-powered camera and sensor systems provide large-scale, cost-effective monitoring of the transportation ecosystem, 

at both vehicle and infrastructure levels. Such camera and sensing systems can collect high-fidelity data across many 

spatiotemporal scales, powered by advances in AI methods for image and video analytics. Powered by street-side, vehicle, 

or UAV-mounted cameras, AI techniques for object detection, classification and counting, and activity recognition are 

applied to monitor road users, from pedestrians and bi-cycles to cars and trucks. Integrating camera and LiDAR data can 

further enhance object detection capabilities, while domain adaptation techniques allow networks to be trained with 

synthetic data, enabling practial use of systems in diverse domains. 

At an infrastructure level, cameras can monitor the road and surrounding infrastructure. Road conditions (e.g. asphalt 

distresses), lane occupancy and hopping irregularities can be detected. Major road events such as flooding at intersections 

or debris can also be detected; spawned events can trigger the deployment of local resources such as tow-in services. 

Deploying actual vision-based detection of road events and conditions that conduct a direct impact on user sother 

estimators would also be beneficial. A complementary solution to vision-based camera networks can be a network of 

battery-less low-cost commercially-available sensors; these sensors offer low monitoring capability yet are present at a 

dense network while being powered by a central light source. Exploiting redundancy and sensors’ own capabilities, fusion 

at the transportation system level allows the use of data for indirect or event-tied estimations. 

 

metric value 

Demand MAE (trips/hr) 7.92 

Worst congestion index 2.7 

Final fed loss 0.128 

Noise sigma at eps=1 4.84 

 

5. DATA GOVERNANCE, PRIVACY, AND ETHICAL CONSIDERATIONS 

 

The predictive power of machine learning and deep learning is invaluable for optimizing traffic and transport. However, 

the usage of external data, including digital traces from social networks and mobile devices, creates substantial privacy 

risks that need to be mitigated. Privacy-preserving analytics can help to provide valuable insights while protecting 

sensitive information through spatial and temporal anonymization. New privacy-holed AI algorithms incorporate 

differential privacy while directly responding to demand-response requests. Furthermore, AI bias caused by under-

representation of groups can harm social fairness. The combination of automated transport and ITS can exacerbate 

existing unfairness in society. Achieving fairness, accountability, and transparency in research, algorithm design, and 

decision-making in AI-based transport systems will increase public acceptance and thus the benefits of ITS. 

Traffic prediction and optimization, and even traffic monitoring, rely on accurate prediction algorithms. The prediction 

quality can deteriorate due to changes in model boundary conditions, resulting in poor control performance. The predicted 

traffic situation can also be imprecise and additionally hamper vehicle routing, resulting in increased traffic congestion. 

The risk of such errors can be reduced by implementing a warning system that notifies operators of potential decreases 

in prediction quality. Such a system uses indicators that assess the stability of components in the traffic prediction process 

and the quality of traffic predictions. The indicators are based on historical data and estimate the risk of unstable model 

boundary conditions and low prediction quality; they do not require assumptions about the underlying prediction 

algorithms. 

 

5.1. Privacy-Preserving Analytics in Transportation 

The ever-increasing volume of potential data sources raises significant privacy concerns. Privacy definitions change 

according to the context and may also include free will, autonomy, self-esteem, and dignity. The absence of appropriate 

privacy-preserving policies might lead to a decrease in public trust in Intelligent Transportation Systems (ITS), which 

jeopardizes the successful deployment of ITS services. Privacy-preserving information sharing, such as systems that cope 

with the real-time sharing of private information without exposing sensitive attributes, should be enabled.  
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Fig 3: Preserving Public Trust in Intelligent Transportation: A Framework for Privacy-Centric Data Governance and 

Anonymized Information Sharing 

 

Transport authorities or agencies should be aware of the critical privacy issues and dangers that may arise from collecting 

and publishing travel information. Existing privacy-preserving databases can either identify the information or allow the 

identification of information for the various shared groups. 

Privacy is a critical consideration in telecommunication and computer networks. Various privacy-preserving techniques 

have been proposed in the context of transportation systems that allow a third-party trustworthy entity to perform some 

aggregate computing requests without knowing the individual private data. The entities have little or no knowledge of 

the systems. They are not allowed to misuse the user's profile. Transportation data are likely to be sensitive data that can 

reveal when and where individuals want to move. Users are likely to prefer not to reveal their travel locations and 

destination information as required privacy needs to be retained. 

 

5.2. Bias, Fairness, and Accountability in ITS AI 

Many AI methods are not interpretable, which raises concerns for data-driven decision-making. Historically, Intelligent 

Transportation Systems (ITS) have been a sensitive area for civil rights organizations, given their historical associations 

with mass surveillance. There are ongoing concerns regarding the balance between safety and civil liberties—e.g., 

monitoring of traffic for congestion versus monitoring civil rights protestors. When applied to data collection, prediction 

models, and deployment of autonomous vehicles, the use of AI in ITS raises fairness concerns such as: 

* Technical biases in the training datasets used for supervised predictive modeling that arise even in the absence of 

malicious intent. For example, facial recognition technology has been found to be less effective for individuals with 

darker complexions. 

* Algorithmic bias that may emerge when predictive modeling results are utilized for decision-making—for example, 

placed police patrol locations causing increased arrest rates at those locations. 

Civil rights organizations have raised concerns that anti-traffic deaths proposals could serve as cover for proposals that 

expand surveillance in communities of color. To mitigate the effects of bias and lack of fairness in ITS, accountability 

principles should guide the development of scanning and acquisition technologies. Appropriate scanning and acquisition 

design should include an emphasis on racial data and bias when assessing model performance. Additional techniques 

such as adversarial modeling may help establish fairness for groups that could be affected by bias in society. 

 

6. DEPLOYMENT AND OPERATIONALIZATION 

 

Deployment of data-centric solutions in Intelligent Transportation Systems (ITS) typically follows the general process of 

machine learning model deployment and operationalization. This encompasses the steps of model inference, hyper-

parameter tuning, retraining, recommender systems setup, configuration dashboard setup, monitoring, logging, and 

reporting, among others. Specific aspects of these processes, such as managing the data required for inference, supporting 

hyper-parameter tuning, and providing ML lifecycle management, are thus common to other domains. Some specialized 

techniques have also been developed, such as monitoring for concept drift in fast-changing environments. However, 

implementation can vary based on the complexity of maintenance requirements and the demand for providing valuable 
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predictions constantly. The open-source MLOps solution ZenML supports both serving and batch jobs and is tailored to 

the fast-changing world of Intelligent Transportation Systems, enabling daily retraining of models using MLOps 

principles. 

Model lifecycle management and MLOps platforms support all the steps and operations mentioned above, from model 

development to maintenance and production use. Such infrastructure is essential in domains like Intelligent 

Transportation Systems, where maintaining highly accurate and relevant predictions is key to providing business value. 

A proper model lifecycle management and MLOps setup can decrease the overhead of model development and tuning 

while extending the personalisation, customisation, relevance, and utility of predictions, ultimately improving business 

outcomes. 

 
 

Equation 3) Congestion modeling from speed/flow (practical ITS metric) 

The emphasizes congestion prediction and hotspot forecasting . 

A common congestion index uses free-flow speed 𝑣𝑓𝑓 and observed speed 𝑣𝑡: 

Step 1: Define observed and baseline speeds 

• 𝑣𝑓𝑓: typical free-flow speed for a segment 

• 𝑣𝑡: observed speed at time 𝑡 

Step 2: Define congestion index 

𝐶𝐼𝑡 =
𝑣𝑓𝑓

𝑣𝑡
 

• If 𝐶𝐼𝑡 ≈ 1: uncongested 

• If 𝐶𝐼𝑡 ≫ 1: congested 

Step 3: Congestion classification (thresholding) 

Congested
𝑡
= {

1, 𝐶𝐼𝑡 ≥ 𝜏
0, 𝐶𝐼𝑡 < 𝜏

 

 

6.1. Model Lifecycle Management and MLOps for ITS 

Operationalizing ML and DL models—i.e., serving them in production while monitoring performance, retraining them 

when necessary, and so on—requires a practice referred to as model lifecycle management. It implements management 

principles and concepts, such as continuous integration (CI), continuous delivery (CD), and infrastructure as code (IaC), 

tailored to the peculiarities of ML systems. A specialized field called MLOps expands DevOps principles and practices 

to ML-powered solutions. Learning- and AI-optimized iterations of MLOps have also been proposed. While 

implementation can be more straightforward than for regular software, specificities of the techniques involved and the 

associated security, privacy, and ethical aspects warrant a dedicated approach. 

Generally, models are validated and tested against earlier withheld data before being deployed in production. New and/or 

faster data—available in streaming architectures supporting demand prediction and congestion mitigation—are suited for 

online learning. The most complex models have better accuracy but predict slower. Testing is needed to determine how 

much they pick (if at all) in real-time setups. Serving parallel branches trained at different cadences or administratively 

disabled is an alternative. 
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7. CONCLUSION 

 

The successful development and operationalization of efficient, adaptive, and trustworthy intelligent transportation 

systems (ITS) relies heavily on well-architected data environments and AI. This paper provides an overview of 

foundational, architectural, methodological, ethical, and deployment-related aspects of AI-powered data engineering for 

ITS. The focus is on the design and implementation of reusable and shareable components and capabilities that support 

rapid innovation cycles and enable users to employ advanced AI techniques—predictive modeling, computer vision, 

sensor fusion, and privacy-preserving analytics—on real data and generate repeatable and actionable insights. 

Promising directions for future research include the creation of new frameworks, theory, and algorithms for distributed 

data-hub architectures; the development of efficient incremental-learning and online methods for information extraction 

from images and videos; the integration of predictive-demand models with traffic-assignment models that simulate the 

effect of different transit-supply configurations on congestion; and the identification of desirable properties of ethically 

aligned ITS systems where model predictions might affect real-world decisions. 

 
Fig 4: Architecture of Reuse & Shareability 

 

7.1. Final Thoughts and Future Directions 

The intelligent transportation system (ITS) of a smart city can be seen as a distributed cyberphysical system that operates 

constantly in a dynamic environment. A particular feature of this environment is the presence of extreme events, such as 

traffic jams due to accident or severe weather conditions, terrorist attacks, and so forth. Therefore, the ITS of a smart city 

needs to be continuously optimized and updated in real time-as every component of any cyberphysical system needs to 

be monitored. Collector sensors, computer vision, and sensor fusion techniques, among many others, are able to track 

and collect data about the larger traffic events in real time. 

Transport-demand and congestion-prediction models need to be developed, trained, and updated with every regulation 

change, detective-vessel addition, and model-enhancement activity. In smart-cities working for environmental 

sustainability, the modeling process extends to environmental aspects that in the past were never included in an ITS-

analysis model. All these activities need to be integrated into a single smart-city data engineering hub, able to fully 

support the development, validation, and continuous updating of any transport-optimization model. 

Additionally, because ITS data come from different sources and agents, enter the smart-city data engineering hub through 

different channels, and are processed for different objectives, the final architecture is structured as a data-federation hub 

allowing federated queries on geographically distributed data sources. The architecture is smart in the sense that whenever 

data for a specific analysis are not locally available, the federated query automatically locates the data source and executes 

the query. 
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