
ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 26

A visualized, self-regulating, easily expandable

and low-cost system, for simultaneous measuring

and control of visible and infrared lighting, tem-

perature, humidity and time duration of the above

parameters’ values of a greenhouse or industrial

environment, using VHDL and FPGAs

Dr Evangelos I. Dimitriadis1, Ioannis Vourvoulakis2, Leonidas Dimitriadis3,

Xenofon Dimitriadis4

Department of Computer, Informatics and Telecommunications Engineering,

International Hellenic University, End of Magnisias Str, 62124 Serres Greece, edimitriad@sch.gr1

Assistant Professor Department of Computer, Informatics and Telecommunications Engineering,

International Hellenic University, End of Magnisias Str, 62124 Serres Greece, jvourv@ihu.gr2

Undergraduate Student, Department of Information and Electronic Engineering, International Hellenic University,

57400, Sindos Thessaloniki, Greece, leonidasdimitriadis635@gmail.com3

B.Sc. Agriculture, Serres Greece, xedimitr@otenet.gr4

Abstract: We present here an FPGA-based system, capable of simultaneous measuring and control of visible and infrared

lighting, temperature and humidity values of a greenhouse or industrial environment. The system uses DE10-Lite FPGA

board with four sensors connected to it and in conjunction with the easy way of expanding both its software and hardware

by adding more sensors, in order to cover larger areas, it is considered to be of low cost. All sensors and time values act

as input. Sensors’ range values and time duration for each of them are initially set by the programmer. The program used

in this work converts analog inputs to digital values and displays corresponding voltage measurements in seven-segment

displays of the board. A series of processes is activated upon system is set to ON, in order to achieve checking and control

of parameter values. Blue LEDs and corresponding control systems are activated if related sensors’ values become less

than lower critical values set by programmer, while red LEDs and corresponding control systems are activated for sen-

sors’ values overcoming upper critical values. Especially for visible light values, step motor for opening or closing cur-

tains is also activated and FPGA’s board LEDs and buzzer connected to it are also ON, when upper critical value is

exceeded. Yellow LEDs are activated for each parameter exceeding time set values. Finally an alarm level system turns

on corresponding LEDs, depending on the number of parameter values that simultaneously exceed range values set by

programmer.

Keywords: Sensors, Self-regulating system, FPGA, VHDL, Buzzer, LEDs

INTRODUCTION

It is well known that FPGAs have attracted attention of researchers in the recent years, for industrial as well as other

applications. (1-13) FPGAs have the main advantage of combining software and hardware, thus enabling hardware pro-

gramming for a series of applications. The most used languages for FPGAs’ programing are VHDL and Verilog and

VHDL is the one used in our work.

Another interesting application field of FPGAs are greenhouse and industrial environments parameters control. We found

out that in spite of all work done concerning FPGAs, there are a few projects (14-16) concerning greenhouse control sys-

tems. Presented works use expensive and complicated systems, or control only two basic parameters. We present here an

FPGA-based system able to measure and control four parameters, including visible and infrared light, temperature and

humidity of the inspected area. Our work provides a system which can simultaneously measure and control the above

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 27

parameters and keep greenhouse or industrial area in a self-regulating condition, according to parameters’ values set by

the programmer. He can have a visualized view of parameters’ measured values and also of the alarm level that the

inspected area happens to be in. The algorithms used here can restore parameter values to desired ones by activating

corresponding control systems, whenever one or more parameters are out of programmer’s set range values. Another

benefit of our system is that it can be easily expanded using more of the same kind sensors, in order to cover larger areas

of inspection or alternative sensors (i.e. ultraviolet sensors) to measure other physical quantities. Additionally its cost is

remarkably low.

Design overview and operation of the system

It is known(17,18) that visible light (400–780 nm) is critical for driving the photosynthesis process of greenhouse plants.

Red and blue light are more efficient for photosynthesis, with the peak efficiency occurring at around 625 nm, but near-

infrared spectrum (780–2500 nm) have little contributions. The plant consists for the most part of water, so it is quickly

warmed up by infrared radiation, especially above 1200 nm. It is obvious from the above statements that both visible and

infrared light are of great importance in modern greenhouse environments, hence two of our system sensors measuring

and controlling their values. The other two sensors are involved with temperature and air humidity of the inspected area.

 Figure1 presents device overview and operational units of our system, using FPGA DE10-Lite board, while Figure2

presents circuit diagram of the system.

It is obvious from both of the above figures that our system, except from DE10-Lite FPGA board, contains also some

basic circuit parts. The first one at the left top is visible light control system. Next to it there is a buzzer circuit containing

a transistor and diode and it is connected in I/O pins of the FPGA board. It is the circuit that controls buzzer’s operation.

The transistor is used for amplifying signal bit 1 sent by the I/O pins of FPGA board, in order to provide sufficient voltage

supply for buzzer operation.

 At the right top we can see the four sensors used here, each of them connected to its voltage divider and acting as input

to Analog to Digital Converter (ADC) pins of the FPGA board. We used NTC thermistor 10K, BPW 34 PIN IR photo-

diode, GL5516 Light Dependent Resistor LDR 5MM and HR 202 humidity module. Below sensors’ circuit part, exist

three control parts. IR light, temperature and humidity control systems. At the right bottom we can see the alarm level

system control, which informs user about the number of sensors’ values being out of set range. Finally at the bottom of

the system we can see the step motor with its control module, used for opening or closing curtains of the greenhouse, in

order to achieve higher or lower visible light illuminance values, respectively. All sensors’ values control circuits contain

three LEDs, blue, red and yellow, corresponding to external control systems, which are activated when they receive bit

1 from the FPGA board.

Our system starts operating as soon as power supply +5V is applied to all sensors and the VHDL program is sent via

USB Blaster interface, to FPGA chip, reading at first input voltages from all sensors’ voltage dividers, with simultaneous

start of time measurement. The analogue input voltages are converted to digital and presented in seven-segment displays

using precision of two decimal digits. We used an SW switch of the FPGA board in order to present analog voltages in

couples, infrared-visible and temperature-humidity. Needless to mention that the system receives input voltage values

periodically, ensuring continuous voltage change monitoring.

Consequently, thirteen controls are simultaneously put in use. Each sensor is involved with three controls, leading to a

total number of twelve controls for all sensors. First one is checking whether input voltage value is equal or lower than

lower critical voltage value of 0.2V, set by the programmer, and, if this is true, then bit 1 is sent to control system1,

represented by blue external LED. All sensors’ range values are similarly set for convenience reasons. Second control is

relevant to whether input voltage value exceeds upper critical voltage value of 1.0V and, if this is true, then bit 1 is sent

to control system2, represented by red external LED. It must be mentioned that if input voltage values are greater than

0.2V and smaller than 1.0V, then bit 0 is sent to control systems 1 and 2 and both of them are deactivated. It is a great

advantage of our system that the above critical voltage values can be set by the programmer, providing the ability of

using our system in a variety of applications.

Third control is involved with time duration of each sensor’s range values. A critical time-duration value is also set by

the programmer and, if it is exceeded, then bit 1 is sent to control system3, represented by yellow external LED. In this

work we used critical time value of a few minutes, in order to obtain a fast check of our system’s successful operation

and this value is the same for all sensors for convenience reasons.

The system can accept different sensor range values for different corresponding time- duration values, after making a

small change in sensors’ control algorithms. This is one of our system advantages mentioned earlier and in conjunction

with the easy way of adding more sensors for monitoring larger areas, it offers the ability of a variety of applications for

our system.

Finally, the thirteenth control activated at the same time as all the above sensors’ controls is our system’s alarm level

control. It uses an algorithm process to periodically check the number of sensors whose values are simultaneously out of

range, set by the programmer. The above number could take one of the following values 0, 1, 2, 3 or 4, leading to green,

blue, white, yellow or red LED lighting up respectively, in the alarm level control area of our system, shown in Figures

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 28

1 and 2. It is obvious that every LED that lights up has received bit 1 from FPGA’s GPIO pins, while simultaneously all

others received bit 0.

All the above controls are periodically operated as long as the system is at the ON state. The system goes to OFF state if

external circuit voltage supply is OFF or if FPGA board is unplugged from USB Blaster, or both of them.

It must be mentioned here that, concerning visible light control, except from blue, red and yellow LEDs output, we use

simultaneously a step motor system with its corresponding algorithm process, for opening or closing covering area equip-

ment, such as curtains, depending on illuminance values. When blue LED lights up, suggesting visible light values less

than appropriate ones, step motor starts opening the greenhouse’s curtains with the opposite process taking place if values

exceed desired ones. Additionally, when visible light values exceed those set by the programmer, all FPGA’s board LEDs

light up and buzzer starts sounding.

It is obvious that similar systems are used to regulate all other physical quantities’ values, monitored by four sensors,

whenever they are out of set range values. Bit 0 or 1 could be sent to an infrared lamp system for turning it OFF or ON,

if infrared values of the inspected area are higher or lower, respectively, than those set by the programmer. Similarly bit

0 or 1 can be sent to an air heating system for turning it OFF or ON, if temperature values of the inspected area are higher

or lower, respectively, than those set by the programmer.

Finally, an air drying system could control, similarly to the above systems, air humidity values. All the above controls

are related to corresponding algorithm processes, which are intended to achieve the goal of self-regulation of our system.

The second goal of visualized system holds true, since system user has a consolidated view of the monitored physical

quantities’ values of the supervised area, with simultaneous check of all control systems behavior and operation.

We must mention here, some indicative measured values using our four sensors. Visible light illuminance of 650 lux

resulted in 0.2V input value from LDR divider, while 3500 lux value resulted in 1.0V input value. Concerning IR light,

0.51 V input value was measured using a red, near-infrared laser of 5mW power for lighting IR photodiode, resulting in

an approximate light intensity of 71.42 mW/cm2. Temperature of 22o C, resulted in an input voltage of 0.16V from the

NTC divider, while 0.9V were measured for 45o C. Finally, the humidity module HR202 resulted in 4.5V input value for

an air humidity of 45%. All the above, make clear that depending on the inspected area and the physical quantities’ range

values existing there, we are enforced to make the appropriate changes for the resistance values used in the sensors’

dividers, in order to sufficiently monitor input values.

Figures 3,4,5,6 and 7 present our system’s operations mentioned above.

Figure 3 shows the system in red alarm condition operation, because all sensors values are out of set range. Red LED in

the alarm system control unit is ON. Visible light, infrared and temperature inputs are below lower critical value (blue

LEDs ON), while humidity input is above upper critical value (red LED ON). Consequently, alarm level system has red

LED ON. Seven-segment displays present 0.04V and 0.18V input values for infrared and visible light respectively, both

below 0.2V set as lower critical value. If we want to view in seven-segment displays the input values of temperature and

humidity, SW0 switch of the FPGA board must go to ON state. Step motor starts rotating clockwise.

Figure 4 presents the system in red alarm condition operation again, but the difference is that visible light input values

are now above upper critical value of 1V. We observe input value of 1.83V due to lighting LDR with the red, near-

infrared laser beam. As we mentioned above, all FPGA board LEDs are ON and buzzer sounds. Step motor starts rotating

counter-clockwise.

Figure 5 presents the system in yellow alarm condition operation, because one of four sensors input value, in this case

visible light, is in the set range (0.23V) due to lighting LDR sensor. It is worth mentioning that step motor stops rotating.

Figure 6 presents our system in white alarm condition operation, meaning that two of four sensors’ input values are in

the set range. Both LDR and IR photodiode are lit and present input voltage values of 0.29V and 0.50V, respectively.

Figure 7 shows another important operation of our system. It is time duration of set range input values for all sensors. It

is set to 1min for convenience reasons for all sensors, hence four yellow LEDs, placed in four sensors’ control systems,

are ON, informing system user that he can change one or more sensors’ set range input values. VHDL program used

here, gives the ability of setting different time duration input range values for one or more sensors, without the need of

programmer’s intervention each time a change is made. Yellow LED in each sensor control system could be used then

just to remind user about the next input value time duration period.

Programing the system

 We used Quartus Prime Lite Edition 21.1.1 to create the VHDL programs of our system.

It must be mentioned here that before proceeding with the VHDL programming of our system, we had to set a series of

parameters controlling the operation of DE10-Lite FPGA’s Analog to Digital Converter (ADC). This converter plays a

very important role in the whole system operation, since it converts the analogue input voltages from all sensors con-

nected to FPGA board to digital values, acting as main input of the system. The files created by the above ADC param-

eters setting are imported into the final project of our system. We also integrated specific settings, which give us the

ability of having four input channels, corresponding to four sensors used in this work.

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 29

The overall program is shown in the appendix of this paper. Figure 8 presents the basic flowchart of our system’s opera-

tion, which contains the main algorithmic procedures used here. The first check is whether the system is at the ON or

OFF condition. If this holds true, four sensors’ control systems start sending analog input voltage values to Analog to

Digital Converter (ADC) of the FPGA board, with simultaneous time measurement. We use the appropriate processes to

convert each sensor’s input value to its corresponding digital one and display the analog values in seven-segment displays

in pairs of two sensors, by using SW0 switch of the FPGA board to alternate between pairs. Processes of binary to BCD

conversion are also incorporated here for each sensor.

Figure 8 consequently presents thirteen processes operating simultaneously in parallel. Twelve of them are related to the

three controls taking place for each one of four sensors used in our system. They measure and control minimum and

maximum input values and also time duration of the set range values for each sensor, thus controlling visible light,

infrared light, temperature and humidity values of the greenhouse or industrial area inspected by the system. A set of

LEDs, blue, red and yellow, act as output for each sensor control system, representing the corresponding control systems

that are being activated in each case. Blue LED turns ON if input voltage value is lower than the minimum set critical

value. Red LED respectively, turns ON if input value is higher than the maximum set value and yellow LED turns ON

to inform user that the time duration of the set range values for each sensor is exceeded. Especially for visible light,

additional algorithmic process is activated concerning step motor operation, to control the opening or closing of curtains

or roof covering of the inspected area, as we discuss below for Figure 9.

Finally, the thirteenth process of Figure 8 is involved with the alarm system control, which shows the number of sensor

values being simultaneously out of range, whether they exceed maximum or minimum of set values, as we discuss below

for Figure 10.

Figure 9 presents a more detailed flowchart view of visible light controls. Needless to say that except from the step motor

and buzzer operation, all the controls presented in this figure are the same for all sensors used here. It presents controls

of minimum, maximum and time duration of the set range values and activation of corresponding LEDs. It also shows

the activation of step motor system rotating, clockwise for lower than minimum set input values and counterclockwise

for higher than maximum set input values, thus increasing or decreasing visible light illuminance, respectively, by open-

ing or closing curtains or the roof covering of the inspected area. Finally, Figure 9 shows that all FPGA board LEDS

simultaneously with the buzzer system are ON, if input visible light illuminance value is higher than maximum set value.

Figure 10 shows a flowchart of the alarm system control operation, which in conjunction with all other control systems,

completes the visualized view of system’s condition. The above alarm system, also shown in Figures 1 and 2, uses five

different color LEDs, green, blue, white, yellow and red. Its main function is to present the alarm level of the system after

checking algorithmically the number of sensors’ input values that are simultaneously out of programmer set range, by

using a serial control algorithm. If all sensors’ input values are within set range, there is no alarm for the system and only

green LED is ON by receiving bit1 from the FPGA board. If one sensor input value is out of range then only blue LED

is ON. Similarly only white LED is ON if two sensors’ input values are simultaneously out of set range, and only yellow

LED is ON if three sensors’ input values are at the same time, out of set range. Finally, red alarm condition is reached

and only red LED is ON, in the case of all four sensors’ input values being simultaneously out of set range.

If one or more sensors’ input values turn into set range, the system alarm level subsequently lowers.

CONCLUSION

An FPGA-based system is presented here for measuring, displaying and controlling four sensors’ input values. Visible

light illuminance, infrared light intensity, temperature and humidity of an inspected area are measured and controlled, in

order to maintain their values within programmer’s set range values. Our system is also capable of setting and controlling

time duration values for all the above parameters. Corresponding control systems and respective LEDs are activated

whenever one or more sensor input values are lower than minimum set values or higher than maximum set values. An-

other control system that is activated as soon as our system starts operating is the alarm level control system, which

informs user about the number of sensors’ input values that are simultaneously out of set range. Our system’s main

advantages are based on its low cost, easy expansion for larger area use or alternative sensor incorporation, and the ability

to visualize and self-regulate the system. Our system is programed using VHDL language and can be implemented in a

variety of inspected areas, such as greenhouses, or industrial areas.

REFERENCES

1. M. Yussup, M.M. Ibrahim, L. Lombigit, N.A.A. Rahman and M.R.M. Zin, “Implementation of data acquisition

interface using on-board field-programmable gate array (FPGA) universal serial bus (USB) link”, Advanc. in Nu-

clear Research and Energy Development, AIP Conf. Proc. 1584, 69-72 (2014), doi: 10.1063/1.4866106

2. A. Gujar, International Journal of Computer Science and Information Technologies, “Image Encryption using AES

Algorithm based on FPGA”, vol 5, (5), 2014, 6853-6859

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 30

3. S. Singh, A.K. Saini, R. Saini, I.J. Image, Graphics and Signal Processing, “Interfacing the Analog Camera with

FPGA Board for Real-time Video Acquisition” 2014, 4, 32-38, DOI: 10.5815/ijigsp.2014.04.04

4. S. Muthukrishnan and R. Priyadharsini, International Journal of Computer Science and Mobile Computing, “32-Bit

RISC and DSP System Design in an FPGA” vol 3, issue 12, Dec. 2014, pg. 361-368

5. L. Chen, Y. Chang, L. Yan, IEEE Transactions on Geoscience and Remote Sensing, “On-orbit real-time variational

image destriping: FPGA architecture and implementation”, 10.1109/tgrs.2022.3140428, 2022, pp. 1-1

6. S. Yarlagadda, S. Kaza, A. Tummala, E. Babu, R. Prabhakar, Information Technology in Industry, “The reduction

of Crosstalk in VLSI due to parallel bus structure using Data Compression Bus Encoding technique implemented on

Artix 7 FPGA Architecture”, 10.17762/itii.v9i1.151, 2021, Vol 9 (1), pp. 456-460

7. C. Du, Y. Yamaguchi, Electronics, “High-Level Synthesis Design for Stencil Computations on FPGA with High

Bandwidth Memory”, 2020, 9(8), 1275; https://doi.org/10.3390/electronics9081275

8. X. Hao, C. Lin and Q. Wu, Electronics, “A Parallel Timing Synchronization Structure in Real-Time High Transmis-

sion Capacity Wireless Communication Systems”, 2020, 9(4), 652; https://doi.org/10.3390/electronics9040652

9. P. A. Bawiskar, R.K. Agrawal, International Journal of Innovative Research in Science, Engineering and Technol-

ogy, “FPGA Based Home Security System” vol.4, issue 12, Dec. 2015, p. 12865-12869, DOI:

10.15680/IJIRSET.2015.0412139

10. K. Saroch, A. Sharma, IOSR Journal of Electronics and Communication Engineering, “FPGA Based System Login

Security Lock Design Using Finite

State Machine” vol 5, issue 3, Mar.-Apr. 2013, pp 70-75

11. R.S. Parikh, Int. Journal of Engineering Research and Application, “Alarm System Implementation on Field Pro-

grammable Gate Array” vol 8, issue 1, Jan. 2018, pp 01-04.

12. E. I. Dimitriadis and L. Dimitriadis, “A Simple, Low Cost and Multiple Input Alarm System, Functioning as Finite

State Machine (FSM), Using VHDL and FPGAs”, Journal of Active and Passive Electronic Devices, vol. 17, pp.

307–315, 2024.

13. E. I. Dimitriadis and L. Dimitriadis, “A g-sensor based alarm system, for multiple tilt sensor applications, using

VHDL and FPGAs”, Journal of Active and Passive Electronic Devices, vol. 18, pp. 119-129, 2024.

14. L. Bajer and O. Krejcar, “Design and realization of low cost control for greenhouse environment with remote con-

trol”, IFAC-PapersOnLine, vol. 48-4, pp. 368-373, 2015.

15. N. Thirer and I. Uchansky, “An FPGA based computer system for greenhouse control”, Athens Journal of Sci-

ences, vol. 2, pp. 23-32, 2015.

16. C. Lachouri, K. Mansouri, A. Belmeguenai and M. Lafifi, “FPGA implementation of adaptive neuro-fuzzy infer-

ence systems controller for greenhouse climate”, International Journal of Advanced Computer Science and Appli-

cations, vol. 7, no. 1, pp. 261-266, 2016.

17. A. Kavga, F. Evangelopoulou, C. Koulopoulou, M. Zografou and I. Lycoskoufis, “Effects of infrared radiation

(IR) on growth parameters of eggplant cultivation and greenhouse energy efficiency”. Acta Hortic. 1296, pp.203-

210, 2020DOI: 10.17660/ActaHortic.2020.1296.26

18. T. Goldammer, “Greenhouse Management. A Guide to Operations and Technology”, Apex Publishers, ISBN (13):

979-8-89342-168-2, 2024

Figure captions

Figure 1: Device overview and operational units of the system presented in this work, using FPGA DE10-Lite board.

Figure 2: Circuit diagram of the system used in this work.

Figure 3: System at red alarm condition, with 4 sensors’ values out of range.

Figure 4: System at red alarm condition, with 4 sensors’ values out of range and visible light maximum value exceeded.

Figure 5: System at yellow alarm condition, with 3 sensors’ values out of range.

Figure 6: System at white alarm condition, with 2 sensors’ values out of range.

Figure 7: Time values set by the programmer have been exceeded. All sensors control systems have yellow LEDs ON.

Figure 8: Flowchart of system operation.

Figure 9: Visible light control system flowchart. Same for three other sensors, except for step motor and buzzer-led

activation.

Figure 10: Alarm level system control flowchart.

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 31

Figures

Figure 1

Figure 2

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 32

Figure 3

Figure 4

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 33

Figure 5

Figure 6

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 34

Figure 7

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 35

Figure 8

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 36

Figure 9

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 37

Figure 10

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 38

APPENDIX

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use ieee.std_logic_unsigned.ALL; -- step = step + 1

entity DE10_Lite_ADC_sensors is

generic(ClockFrequencyHz : integer:=50000000;

wait_count : natural := 1250000); -- 50000000=1sec

wait time for the stepper

port

(rst : in std_logic; --SW8

coils : out std_logic_vector(3 downto 0); -- connected

to IN1..IN4

nRst : in std_logic; -- Negative reset

Seconds : inout integer;

led1: out std_logic;

led2: out std_logic;

led3: out std_logic;

led4: out std_logic;

led5: out std_logic;

led6: out std_logic;

led7: out std_logic;

led8: out std_logic;

led9: out std_logic;

led10: out std_logic;

led_blue: buffer std_logic;

led_red: buffer std_logic;

led_yellow: buffer std_logic;

led_blue_out: out std_logic;

led_red_out: out std_logic;

led_yellow_out: out std_logic;

led_blue_infr: buffer std_logic;

led_red_infr: buffer std_logic;

led_yellow_infr: buffer std_logic;

led_blue_out_infr: out std_logic;

led_red_out_infr: out std_logic;

led_yellow_out_infr: out std_logic;

led_blue_temp: buffer std_logic;

led_red_temp: buffer std_logic;

led_yellow_temp: buffer std_logic;

led_blue_out_temp: out std_logic;

led_red_out_temp: out std_logic;

led_yellow_out_temp: out std_logic;

led_blue_hum: buffer std_logic;

led_red_hum: buffer std_logic;

led_yellow_hum: buffer std_logic;

led_blue_out_hum: out std_logic;

led_red_out_hum: out std_logic;

led_yellow_out_hum: out std_logic;

buzzer:out std_logic;

Vr: buffer integer;

Vinfr: buffer integer;

Vtemp: buffer integer;

Vhum: buffer integer;

d2abuf :buffer integer range 0 to 9;

d1abuf :buffer integer range 0 to 9;

d0abuf :buffer integer range 0 to 9;

d2bbuf :buffer integer range 0 to 9;

d1bbuf :buffer integer range 0 to 9;

d0bbuf :buffer integer range 0 to 9;

d2cbuf :buffer integer range 0 to 9;

d1cbuf :buffer integer range 0 to 9;

d0cbuf :buffer integer range 0 to 9;

d2dbuf :buffer integer range 0 to 9;

d1dbuf :buffer integer range 0 to 9;

d0dbuf :buffer integer range 0 to 9;

SW0 : in std_logic;

red_led_alarm : out std_logic;

yellow_led_alarm: out std_logic;

white_led_alarm: out std_logic;

blue_led_alarm: out std_logic;

green_led_no_alarm: out std_logic;

red_led_alarm_buff : buffer std_logic;

yellow_led_alarm_buff: buffer std_logic;

white_led_alarm_buff: buffer std_logic;

blue_led_alarm_buff: buffer std_logic;

green_led_no_alarm_buff: buffer std_logic;

-- Clocks

ADC_CLK_10: in std_logic;

MAX10_CLK1_50: in std_logic;

MAX10_CLK2_50: in std_logic;

-- KEYs

KEY: in std_logic_vector(1 downto 0);

-- HEX

HEX0: out std_logic_vector(7 downto 0);

HEX1: out std_logic_vector(7 downto 0);

HEX2: out std_logic_vector(7 downto 0);

HEX3: out std_logic_vector(7 downto 0);

HEX4: out std_logic_vector(7 downto 0);

HEX5: out std_logic_vector(7 downto 0);

ARDUINO_IO: inout std_logic_vector(15 downto 0);

ARDUINO_RESET_N: inout std_logic);

-- GPIO

--GPIO: inout std_logic_vector(35 downto 0));

end entity;

architecture DE10_Lite_ADC_sensors_Arch of

DE10_Lite_ADC_sensors is

-- Analog to Digital Converter IP core

component myADC is

port(clk_clk: in std_logic := 'X';

modular_adc_0_command_valid: in std_logic := 'X';

modular_adc_0_command_channel: in std_logic_vec-

tor(4 downto 0) := (others => 'X');

modular_adc_0_command_startofpacket: in std_logic

:= 'X';

modular_adc_0_command_endofpacket: in std_logic

:= 'X';

modular_adc_0_command_ready: out std_logic;

modular_adc_0_response_valid: out std_logic;

modular_adc_0_response_channel: out std_logic_vec-

tor(4 downto 0);

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 39

modular_adc_0_response_data: out std_logic_vec-

tor(11 downto 0);

modular_adc_0_response_startofpacket: out std_logic;

modular_adc_0_response_endofpacket: out std_logic;

reset_reset_n: in std_logic

);

end component myADC;

signal modular_adc_0_command_valid: std_logic;

signal modular_adc_0_command_channel:

std_logic_vector(4 downto 0);

signal modular_adc_0_command_startofpacket:

std_logic;

signal modular_adc_0_command_endofpacket:

std_logic;

signal modular_adc_0_command_ready: std_logic;

signal modular_adc_0_response_valid: std_logic;

signal modular_adc_0_response_channel:

std_logic_vector(4 downto 0);

signal modular_adc_0_response_data: std_logic_vec-

tor(11 downto 0);

signal modular_adc_0_response_startofpacket:

std_logic;

signal modular_adc_0_response_endofpacket:

std_logic;

signal clk_clk: std_logic;

signal reset_reset_n: std_logic;

type state_machines is (sm0, sm1, sm2, sm3, sm4);

signal sm: state_machines;

-- signals to store conversion results

signal ADCIN1, ADCIN2, ADCIN3, ADCIN4:

std_logic_vector(11 downto 0);

signal AD1, AD2, AD3, AD4: std_logic_vector(11

downto 0);

-- signals for BCD digits

signal digit2a, digit1a, digit0a: std_logic_vector(3

downto 0);

signal digit2b, digit1b, digit0b: std_logic_vector(3

downto 0);

signal digit2c, digit1c, digit0c: std_logic_vector(3

downto 0);

signal digit2d, digit1d, digit0d: std_logic_vector(3

downto 0);

signal digit5, digit4, digit3, digit2, digit1, digit0:

std_logic_vector(3 downto 0);

-- signal to determine how fast the

-- 7-seg displays will be updated

signal cnt: integer;

signal state_LED: std_logic;

signal state_Vr: integer;

signal state_Vinfr: integer;

signal state_Vtemp: integer;

signal state_Vhum: integer;

signal Ticks : integer;

-- signal for step motor control

signal count : natural range 0 to wait_count;

begin

-- ADC port map

adc1: myADC port map

(modular_adc_0_command_valid => modu-

lar_adc_0_command_valid,

modular_adc_0_command_channel => modu-

lar_adc_0_command_channel,

modular_adc_0_command_startofpacket => modu-

lar_adc_0_command_startofpacket,

modular_adc_0_command_endofpacket => modu-

lar_adc_0_command_endofpacket,

modular_adc_0_command_ready => modu-

lar_adc_0_command_ready,

modular_adc_0_response_valid => modular_adc_0_re-

sponse_valid,

modular_adc_0_response_channel => modu-

lar_adc_0_response_channel,

modular_adc_0_response_data => modular_adc_0_re-

sponse_data,

modular_adc_0_response_startofpacket => modu-

lar_adc_0_response_startofpacket,

modular_adc_0_response_endofpacket => modu-

lar_adc_0_response_endofpacket,

clk_clk => clk_clk,

reset_reset_n => reset_reset_n

);

clk_clk <= MAX10_CLK1_50;

reset_reset_n <= KEY(0);

-- process for reading new samples

p1: process(reset_reset_n, clk_clk)

begin

if reset_reset_n = '0' then

 sm <= sm0;

elsif rising_edge(clk_clk) then

 case sm is

 when sm0 =>

 sm <= sm1;

 modular_adc_0_command_valid <= '1';

 modular_adc_0_command_channel <=

"00001";

 when sm1 =>

 if modular_adc_0_response_valid = '1' then

 modular_adc_0_command_channel <=

"00010";

 ADCIN4 <= modular_adc_0_response_data;

 sm <= sm2;

 end if;

 when sm2 =>

if modular_adc_0_response_valid = '1' then

modular_adc_0_command_channel <= "00011";

ADCIN1 <= modular_adc_0_response_data;

 sm <= sm3;

 end if;

 when sm3 =>

if modular_adc_0_response_valid = '1' then

modular_adc_0_command_channel <= "00100";

ADCIN2 <= modular_adc_0_response_data;

 sm <= sm4;

 end if;

 when sm4 =>

if modular_adc_0_response_valid = '1' then

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 40

 modular_adc_0_command_channel <=

"00001";

 ADCIN3 <= modular_adc_0_response_data;

 sm <= sm1;

 end if;

 when others =>

 end case;

end if;

end process;

-- process for conversion from binary to BCD (first an-

alog voltage)

p2: process(AD1, d2abuf, d1abuf, d0abuf)

variable vin: integer;

variable d2, d1, d0: integer;

begin

vin := to_integer(unsigned(std_logic_vector(to_un-

signed(to_integer(unsigned(AD1)) * 500,

32))(31 downto 12)));

d2 := vin / 100;

d1 := vin mod 100 / 10;

d0 := ((vin mod 100) mod 10);

digit2a <= std_logic_vector(to_unsigned(d2, 4));

digit1a <= std_logic_vector(to_unsigned(d1, 4));

digit0a <= std_logic_vector(to_unsigned(d0, 4));

d2abuf<= d2;

d1abuf<= d1;

d0abuf<= d0;

end process;

-- process for conversion from binary to BCD (second

analog voltage)

p3: process(AD2,d2bbuf,d1bbuf,d0bbuf)

variable vin: integer;

variable d2, d1, d0: integer;

begin

vin := to_integer(unsigned(std_logic_vector(to_un-

signed(to_integer(unsigned(AD2)) * 500,

32))(31 downto 12)));

d2 := vin / 100;

d1 := vin mod 100 / 10;

d0 := ((vin mod 100) mod 10);

digit2b <= std_logic_vector(to_unsigned(d2, 4));

digit1b <= std_logic_vector(to_unsigned(d1, 4));

digit0b <= std_logic_vector(to_unsigned(d0, 4));

d2bbuf<= d2;

d1bbuf<= d1;

d0bbuf<= d0;

end process;

-- process for conversion from binary to BCD (third

analog voltage)

p5: process(AD3,d2cbuf,d1cbuf,d0cbuf)

variable vin: integer;

variable d2, d1, d0: integer;

begin

vin := to_integer(unsigned(std_logic_vector(to_un-

signed(to_integer(unsigned(AD3)) * 500,

32))(31 downto 12)));

d2 := vin / 100;

d1 := vin mod 100 / 10;

d0 := ((vin mod 100) mod 10);

digit2c <= std_logic_vector(to_unsigned(d2, 4));

digit1c <= std_logic_vector(to_unsigned(d1, 4));

digit0c <= std_logic_vector(to_unsigned(d0, 4));

d2cbuf<= d2;

d1cbuf<= d1;

d0cbuf<= d0;

end process;

-- process for conversion from binary to BCD (fourth

analog voltage)

p6: process(AD4,d2dbuf,d1dbuf,d0dbuf)

variable vin: integer;

variable d2, d1, d0: integer;

begin

vin := to_integer(unsigned(std_logic_vector(to_un-

signed(to_integer(unsigned(AD4)) * 500,

32))(31 downto 12)));

d2 := vin / 100;

d1 := vin mod 100 / 10;

d0 := ((vin mod 100) mod 10);

digit2d <= std_logic_vector(to_unsigned(d2, 4));

digit1d <= std_logic_vector(to_unsigned(d1, 4));

digit0d <= std_logic_vector(to_unsigned(d0, 4));

d2dbuf<= d2;

d1dbuf<= d1;

d0dbuf<= d0;

end process;

state_Vr<= (d2bbuf*100)+(d1bbuf*10)+(d0bbuf);

Vr<= state_Vr;

state_Vinfr<= (d2abuf*100)+(d1abuf*10)+(d0abuf);

Vinfr<= state_Vinfr;

state_Vtemp<= (d2cbuf*100)+(d1cbuf*10)+(d0cbuf);

Vtemp<= state_Vtemp;

state_Vhum<= (d2dbuf*100)+(d1dbuf*10)+(d0dbuf);

Vhum<= state_Vhum;

-- determine how fast the 7-seg displays will be up-

dated

p4: process(reset_reset_n, clk_clk)

begin

if reset_reset_n = '0' then

cnt <= 0;

elsif rising_edge(clk_clk) then

if cnt < 20_000_000 then

cnt <= cnt + 1;

else

cnt <= 0;

AD1 <= ADCIN1;

AD2 <= ADCIN2;

AD3 <= ADCIN3;

AD4 <= ADCIN4;

end if;

end if;

end process;

--time-seconds

process(MAX10_CLK1_50) is

 begin

 if rising_edge(MAX10_CLK1_50) then

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 41

 -- If the negative reset signal is active

 if nRst = '0' then

 Ticks <= 0;

 Seconds <= 0;

 else

 -- True once every second

 if Ticks = ClockFrequencyHz - 1 then

 Ticks <= 0;

 Seconds <= Seconds + 1;

 else

 Ticks <= Ticks + 1;

 end if;

 end if;

 end if;

 end process;

 --critical Vr value exceeded buzzer sounds

Process(MAX10_CLK1_50,Vr)

variable i : integer := 0;

BEGIN

IF Vr>=100 THEN

if MAX10_CLK1_50'event and MAX10_CLK1_50 =

'1' then

if i <= 50000000 then

i := i + 1;

buzzer <= '1';

elsif i > 50000000 and i < 100000000 then

i := i + 1;

buzzer <= '0';

elsif i = 100000000 then

i := 0;

end if;

end if;

end if;

end process;

--critical visible light Vr value exceeded board LEDs

and external red led lights up

process(state_LED,led_red,Vr)

begin

 IF Vr>=100 THEN

 led_red <= '1';

 state_LED <= '1';

 else

 led_red <= '0';

 state_LED <= '0';

 end if;

end process;

led_red_out<= led_red;

led1 <= state_LED;

led2 <= state_LED;

led3 <= state_LED;

led4 <= state_LED;

led5 <= state_LED;

led6 <= state_LED;

led7 <= state_LED;

led8 <= state_LED;

led9 <= state_LED;

led10 <= state_LED;

--Visible light Vr lower than low critical value then ex-

ternal blue led lights up

process(led_blue,Vr)

begin

 IF Vr<=20 THEN

 led_blue <= '1';

 else

 led_blue <= '0';

 end if;

end process;

led_blue_out<= led_blue;

--Time-seconds exceeds critical value for visible light

lighting then yellow led lights up

process(led_yellow,Seconds)

begin

 IF Seconds>=60 THEN

 led_yellow <= '1';

 else

 led_yellow <= '0';

 end if;

end process;

led_yellow_out<= led_yellow;

--critical Vinfr value exceeded board LEDs and exter-

nal red led light up

process(led_red_infr,Vinfr)

begin

 IF Vinfr>=100 THEN

 led_red_infr <= '1';

 else

 led_red_infr <= '0';

 end if;

end process;

led_red_out_infr<= led_red_infr;

--Vinfr lower than low critical value then external blue

led lights up

process(led_blue_infr,Vinfr)

begin

 IF Vinfr<=20 THEN

 led_blue_infr <= '1';

 else

 led_blue_infr <= '0';

 end if;

end process;

led_blue_out_infr<= led_blue_infr;

--Time-seconds exceeds critical value for infrared

lighting then yellow led lights up

process(led_yellow_infr,Seconds)

begin

 IF Seconds>=60 THEN

 led_yellow_infr <= '1';

 else

 led_yellow_infr <= '0';

 end if;

end process;

led_yellow_out_infr<= led_yellow_infr;

--critical Vtemp value exceeded board LEDs and exter-

nal red led light up

process(led_red_temp,Vtemp)

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 42

begin

 IF Vtemp>=100 THEN

 led_red_temp <= '1';

 else

 led_red_temp <= '0';

 end if;

end process;

led_red_out_temp<= led_red_temp;

--Vtemp lower than low critical value then external

blue led lights up

process(led_blue_temp,Vtemp)

begin

 IF Vtemp<=20 THEN

 led_blue_temp <= '1';

 else

 led_blue_temp <= '0';

 end if;

end process;

led_blue_out_temp<= led_blue_temp;

--Time-seconds exceeds critical value for this tempera-

ture then yellow led lights up

process(led_yellow_temp,Seconds)

begin

 IF Seconds>=60 THEN

 led_yellow_temp <= '1';

 else

 led_yellow_temp <= '0';

 end if;

end process;

led_yellow_out_temp<= led_yellow_temp;

--critical Vhum value exceeded board LEDs and exter-

nal red led light up

process(led_red_hum,Vhum)

begin

 IF Vhum>=100 THEN

 led_red_hum <= '1';

 else

 led_red_hum <= '0';

 end if;

end process;

led_red_out_hum<= led_red_hum;

--Vhum lower than low critical value then external

blue led lights up

process(led_blue_hum,Vhum)

begin

 IF Vhum<=20 THEN

 led_blue_hum <= '1';

 else

 led_blue_hum <= '0';

 end if;

end process;

led_blue_out_hum<= led_blue_hum;

--Time-seconds exceeds critical value for this humidity

then yellow led lights up

process(led_yellow_hum,Seconds)

begin

 IF Seconds>=60 THEN

 led_yellow_hum <= '1';

 else

 led_yellow_hum <= '0';

 end if;

end process;

led_yellow_out_hum<= led_yellow_hum;

--alarm level

process (red_led_alarm_buff,yel-

low_led_alarm_buff,white_led_alarm_buff,

blue_led_alarm_buff,green_led_no_alarm_buff,Vr,Vin

fr,Vtemp,Vhum)

begin

IF (Vr<100 AND Vr>20) AND (Vinfr<100 AND

Vinfr>20) AND

(Vtemp<100 AND Vtemp>20) AND (Vhum<100

AND Vhum>20) THEN

green_led_no_alarm_buff <= '1';

blue_led_alarm_buff <= '0';

white_led_alarm_buff <= '0';

yellow_led_alarm_buff <= '0';

red_led_alarm_buff <= '0';

elsif ((Vr>=100 OR Vr<=20) AND (Vinfr<100 AND

Vinfr>20) AND

(Vtemp<100 AND Vtemp>20) AND (Vhum<100

AND Vhum>20)) OR

((Vr<100 AND Vr>20) AND (Vinfr>=100 OR

Vinfr<=20) AND

(Vtemp<100 AND Vtemp>20) AND (Vhum<100

AND Vhum>20)) OR

((Vr<100 AND Vr>20) AND (Vinfr<100 AND

Vinfr>20) AND

(Vtemp>=100 OR Vtemp<=20) AND (Vhum<100

AND Vhum>20)) OR

((Vr<100 AND Vr>20) AND (Vinfr<100 AND

Vinfr>20) AND

(Vtemp<100 AND Vtemp>20) AND (Vhum>=100 OR

Vhum<=20))

THEN

blue_led_alarm_buff <= '1';

green_led_no_alarm_buff <= '0';

white_led_alarm_buff <= '0';

yellow_led_alarm_buff <= '0';

red_led_alarm_buff <= '0';

elsif ((Vr>=100 OR Vr<=20) AND (Vinfr>=100 OR

Vinfr<=20) AND

(Vtemp<100 AND Vtemp>20) AND (Vhum<100

AND Vhum>20)) OR

((Vr>=100 OR Vr<=20) AND (Vinfr<100 AND

Vinfr>20) AND

(Vtemp>=100 OR Vtemp<=20) AND (Vhum<100

AND Vhum>20)) OR

((Vr>=100 OR Vr<=20) AND (Vinfr<100 AND

Vinfr>20) AND

(Vhum>=100 OR Vhum<=20)) OR ((Vr<100 AND

Vr>20) AND

(Vinfr>=100 OR Vinfr<=20) AND (Vtemp>=100 OR

Vtemp<=20) AND

(Vhum<100 AND Vhum>20))

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 43

OR ((Vr<100 AND Vr>20) AND (Vinfr>=100 OR

Vinfr<=20) AND

(Vtemp<100 AND Vtemp>20) AND (Vhum>=100 OR

Vhum<=20)) OR

((Vr<100 AND Vr>20) AND (Vinfr<100 AND

Vinfr>20) AND

(Vtemp>=100 OR Vtemp<=20) AND (Vhum>=100

OR Vhum<=20))

 THEN

white_led_alarm_buff <= '1';

green_led_no_alarm_buff <= '0';

blue_led_alarm_buff <= '0';

yellow_led_alarm_buff <= '0';

red_led_alarm_buff <= '0';

elsif ((Vr>=100 OR Vr<=20) AND (Vinfr>=100 OR

Vinfr<=20) AND

(Vtemp>=100 OR Vtemp<=20) AND (Vhum<100

AND Vhum>20)) OR

((Vr>=100 OR Vr<=20) AND (Vinfr<100 AND

Vinfr>20) AND

(Vtemp>=100 OR Vtemp<=20) AND (Vhum>=100

OR Vhum<=20)) OR

((Vr<100 AND Vr>20) AND (Vinfr>=100 OR

Vinfr<=20) AND

(Vtemp>=100 OR Vtemp<=20) AND (Vhum>=100

OR Vhum<=20)) OR

((Vr>=100 OR Vr<=20) AND (Vinfr>=100 OR

Vinfr<=20) AND

(Vtemp<100 AND Vtemp>20) AND (Vhum>=100 OR

Vhum<=20))

 THEN

yellow_led_alarm_buff <= '1';

green_led_no_alarm_buff <= '0';

blue_led_alarm_buff <= '0';

white_led_alarm_buff <= '0';

red_led_alarm_buff <= '0';

elsif ((Vr>=100 OR Vr<=20) AND (Vinfr>=100 OR

Vinfr<=20) AND

(Vtemp>=100 OR Vtemp<=20) AND (Vhum>=100

OR Vhum<=20)) THEN

red_led_alarm_buff <= '1';

green_led_no_alarm_buff <= '0';

blue_led_alarm_buff <= '0';

white_led_alarm_buff <= '0';

yellow_led_alarm_buff <= '0';

end if;

end process;

red_led_alarm <= red_led_alarm_buff;

yellow_led_alarm <= yellow_led_alarm_buff;

white_led_alarm <= white_led_alarm_buff;

blue_led_alarm <= blue_led_alarm_buff;

green_led_no_alarm <= green_led_no_alarm_buff;

MICROSTEP_PROC : process(MAX10_CLK1_50,

rst, Vr)

 variable step : std_logic_vector(0 to 2) := "111";

 begin

 if rst = '1' then

 coils <= "0000";

 -- we start with a step

 count <= wait_count;

 elsif rising_edge(MAX10_CLK1_50) then

 if (count < wait_count) then

 -- wait for the next micro step

 count <= count + 1;

 else

 -- perfom a single micro step

 count <= 0;

 if (Vr<=20) then

 step := step + 1;

 elsif (Vr>=100) then

 step := step - 1;

 end if;

 case step is

 when "000" => coils <= "0001";

 when "001" => coils <= "0011";

 when "010" => coils <= "0010";

 when "011" => coils <= "0110";

 when "100" => coils <= "0100";

 when "101" => coils <= "1100";

 when "110" => coils <= "1000";

 when "111" => coils <= "1001";

 when others => coils <= "0000";

 end case;

 end if;

 end if;

 end process;

process(digit2a,digit1a,digit0a, digit2c, digit1c,

digit0c, SW0,

 digit2b,digit1b,digit0b, digit2d, digit1d,

digit0d)

begin

 IF SW0='0' THEN

 digit5 <= digit2a;

 digit4 <= digit1a;

 digit3 <= digit0a;

 digit2 <= digit2b;

 digit1 <= digit1b;

 digit0 <= digit0b;

 elsif SW0='1' THEN

 digit5 <= digit2c;

 digit4 <= digit1c;

 digit3 <= digit0c;

 digit2 <= digit2d;

 digit1 <= digit1d;

 digit0 <= digit0d;

 end if;

end process;

 WITH digit5 SELECT

HEX5 <= "01000000" WHEN "0000", -- display 0

"01111001" WHEN "0001", -- display 1

"00100100" WHEN "0010", -- display 2

"00110000" WHEN "0011", -- display 3

"00011001" WHEN "0100", -- display 4

"00010010" WHEN "0101", -- display 5

https://ijireeice.com/
https://ijireeice.com/

ISSN (O) 2321-2004, ISSN (P) 2321-5526

IJIREEICE

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 12, Issue 12, December 2024

DOI: 10.17148/IJIREEICE.2024.121205

© IJIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 44

"00000011" WHEN "0110", -- display 6

"01111000" WHEN "0111", -- display 7

"00000000" WHEN "1000", -- display 8

"00011000" WHEN "1001", -- display 9

"01111111" WHEN OTHERS; -- blank display

WITH digit4 SELECT

HEX4 <= "11000000" WHEN "0000", -- display 0

"11111001" WHEN "0001", -- display 1

"10100100" WHEN "0010", -- display 2

"10110000" WHEN "0011", -- display 3

"10011001" WHEN "0100", -- display 4

"10010010" WHEN "0101", -- display 5

"10000011" WHEN "0110", -- display 6

"11111000" WHEN "0111", -- display 7

"10000000" WHEN "1000", -- display 8

"10011000" WHEN "1001", -- display 9

"11111111" WHEN OTHERS; -- blank display

WITH digit3 SELECT

HEX3 <= "11000000" WHEN "0000", -- display 0

"11111001" WHEN "0001", -- display 1

"10100100" WHEN "0010", -- display 2

"10110000" WHEN "0011", -- display 3

"10011001" WHEN "0100", -- display 4

"10010010" WHEN "0101", -- display 5

"10000011" WHEN "0110", -- display 6

"11111000" WHEN "0111", -- display 7

"10000000" WHEN "1000", -- display 8

"10011000" WHEN "1001", -- display 9

"11111111" WHEN OTHERS; -- blank display

 WITH digit2 SELECT

HEX2 <= "01000000" WHEN "0000", -- display 0

"01111001" WHEN "0001", -- display 1

"00100100" WHEN "0010", -- display 2

"00110000" WHEN "0011", -- display 3

"00011001" WHEN "0100", -- display 4

"00010010" WHEN "0101", -- display 5

"00000011" WHEN "0110", -- display 6

"01111000" WHEN "0111", -- display 7

"00000000" WHEN "1000", -- display 8

"00011000" WHEN "1001", -- display 9

"01111111" WHEN OTHERS; -- blank display

WITH digit1 SELECT

HEX1 <= "11000000" WHEN "0000", -- display 0

"11111001" WHEN "0001", -- display 1

"10100100" WHEN "0010", -- display 2

"10110000" WHEN "0011", -- display 3

"10011001" WHEN "0100", -- display 4

"10010010" WHEN "0101", -- display 5

"10000011" WHEN "0110", -- display 6

"11111000" WHEN "0111", -- display 7

"10000000" WHEN "1000", -- display 8

"10011000" WHEN "1001", -- display 9

"11111111" WHEN OTHERS; -- blank display

WITH digit0 SELECT

HEX0 <= "11000000" WHEN "0000", -- display 0

"11111001" WHEN "0001", -- display 1

"10100100" WHEN "0010", -- display 2

"10110000" WHEN "0011", -- display 3

"10011001" WHEN "0100", -- display 4

"10010010" WHEN "0101", -- display 5

"10000011" WHEN "0110", -- display 6

"11111000" WHEN "0111", -- display 7

"10000000" WHEN "1000", -- display 8

"10011000" WHEN "1001", -- display 9

"11111111" WHEN OTHERS; -- blank display

end architecture;

https://ijireeice.com/
https://ijireeice.com/

