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Abstract: Data engineering refers to the set of activities related to preparing and managing data for analytical workloads, 

and it encompasses a wide range of tasks performed on data at different stages of the analytics life cycle—from ingestion 

and integration to feature engineering and metadata management. A data engineering pipeline connects various e-

commerce data sources by combining data from multiple operational silos (product catalog, customer accounts, shopping 

carts, transaction records, shipping and delivery, payments, etc.) in order to support the development of artificial 

intelligence models used for personalized website experiences, recommendation engines, dynamic pricing strategies, and 

demand forecasting. Nowadays, the volume of consumed data and the highly dynamic nature of the business logic being 

implemented in the underlying model have reached a point where data engineering pipelines need to be automated, 

enabling the data operations teams to support the business more efficiently. 

Automation at scale is an ambitious goal that requires specialized frameworks and technologies across different areas of 

data engineering. These areas are outlined through recurring architectural patterns, and each pattern is built by assembling 

the most suitable services and tools on the market from the cloud providers that best match the organization’s business 

requirements in order to enable the core automation processes. Reusable building blocks are introduced for key activities 

such as cloud-native data platforms, data orchestration and workflow automation, automated schema discovery and 

adaptation, and anomaly detection and data quality alerting. Even though these solutions are presented in the context of 

personalized experiences and recommendation engines—typical workloads of any large e-commerce organization—they 

cover only part of the actual automation. The presented approaches can be applied to any AI/ML problem requiring a 

data plane—such as dynamic pricing and demand forecasting—with the required effort range for implementation. 

Keywords: Data Engineering, Automation, AI, E-Commerce, Personalization,Automated Data Pipelines,AI-Driven ETL 

/ ELT,Real-Time Data Processing,E-Commerce Data Integration,Data Quality Monitoring,Intelligent Data 

Orchestration,Predictive Data Validation,Customer Behavior Analytics,Scalable Cloud Data Warehousing,Anomaly 

Detection in Data Streams. 

1. INTRODUCTION 

In a globalized economy characterized by intense competition and short product life cycles, manufacturing firms are 

searching for approaches to reduce operational costs and improve time-to-market, quality, and customer awareness. As 

a consequence, optimization of operation and production processes of companies in manufacturing, energy, 

transportation, and other industries is becoming crucial. The innovative concept of predictive maintenance (PdM) has 

emerged as a viable strategy to fulfill such goals, particularly in asset-intensive sectors. Based on data sourced from 

physical health and performance monitoring of equipment and systems, PdM aims to predict the remaining useful life 

(RUL) of assets and to make informed, evidence-based decisions on when and how to execute maintenance actions. 

The implementation of this predictive strategy entails broader and more complex requirements on data processing than 

traditional condition monitoring concepts. It involves processes that cover prognostics development and performance 

evaluation, data governance, end-to-end information technology infrastructure and architecture design, cloud placement, 

integration with operation technology, and operational deployment considerations. Cloud computing and artificial 

intelligence (AI) are the two main technology areas that enable PdM. Yet, despite the ever-increasing interest in and 

growing number of implementations of PdM solutions, case studies are still relatively few and often do not validate the 

different aspects of the approach in a comprehensive manner. 
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Fig 1: AI-Powered Predictive Maintenance for Cloud Operations 

1.1. Background and Significance  Ubiquitous cloud environments provide strong computational infrastructure with 

reduced operational costs in various industry sectors. Within these environments, predictive maintenance allows asset 

failures to be detected in advance, enables predictive strategies for service and repair operations, and ultimately improves 

system reliability and availability. For implementations that rely on artificial intelligence (AI), however, scalability is 

often a key challenge. When assets are located in distributed environments, the volume and velocity of monitored data 

can stress the AI model development and governance lifecycle. 

To provide solutions for these challenges, specialized architectural designs for cloud-based predictive maintenance 

deployments are investigated. These architectures address the data ingestion and processing life cycle; governance and 

operationalizing models in production; and infrastructure, data retention, and data processing cost strategies in a single 

detailed description. The literature confirms that cloud-based AI predictive maintenance offers many advantages, yet 

some recent research results raise concerns about model deployment scalability across industry use cases. Addressing 

these issues will help sustain the momentum behind AI predictive maintenance strategies across an increasing range of 

industries. 

2. BACKGROUND AND THEORETICAL FOUNDATIONS 

A concise discussion of predictive maintenance definitions, elements, terminology, and advantages. Predictive 

maintenance predicts failures to enable timely, cost-effective action. Additional elements of condition monitoring and 

prognostics, and concepts of remaining useful life, decision thresholds, and risk-based predictive maintenance, are 

defined. The approach is contrasted with preventive and reactive maintenance. Benefits include cost savings, productivity 

increases, load balancing, safety improvements, asset lifespan extension, and reduced environmental impact. Limitations 

are related to available data and resources, as well as the maturity of implementation. 

A brief overview of suitable cloud computing paradigms and service models. Cloud services can provide scalable IT and 

AI resources, data processing capabilities, and storage capacity for predictive maintenance solutions. Cost, latency, and 

data sensitivity considerations drive the choice of public, private, or hybrid options, of edge or cloud execution, and of 

IaaS, PaaS, or SaaS models. Multi-cloud and other hybrid approaches can combine advantages and mitigate risks. 

Security and compliance remain paramount. 

An outline of AI techniques relevant to predictive maintenance. Machine learning and deep learning detect and predict 

asset health states, while physics-informed, hybrid, or ensemble strategies enhance generalization, uncertainty 

quantification, and real-world applicability. Model drift is monitored, retraining decisions support continual 

improvement, and explainability and interpretability promote user trust and confidence. 

Predictive Maintenance Concepts Predictive maintenance refers to maintenance actions dictated by the prediction of 

potential failures, enabling timely execution to mitigate risk. In addition to prognostics, predictive maintenance often 

encompasses condition monitoring capabilities and the variable of remaining useful life (RUL). RUL estimates inform 

the timing of maintenance actions, while decision thresholds apply risk assessment principles to assess when not 

performing an action is more costly than performing it. Predictive maintenance can therefore be seen as RUL-based risk-

management of assets. 

Equation 1: Reliability 𝑹(𝒕), failure distribution 𝑭(𝒕), hazard 𝒉(𝒕) 

Cloud and AI Solutions for Pred… 

Assumption (common baseline in PdM KPI sections): constant hazard rate 𝜆→ exponential lifetime. 

1. Definition of hazard rate 
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ℎ(𝑡) = lim⁡
Δ𝑡→0

Pr⁡(𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡 ∣ 𝑇 ≥ 𝑡)

Δ𝑡
 

 

For exponential lifetime, assume: 

ℎ(𝑡) = 𝜆(constant) 
 

2. Link hazard to survival (reliability) 

A standard identity: 

ℎ(𝑡) = −
𝑑

𝑑𝑡
ln⁡ 𝑅(𝑡) 

 

So: 

−
𝑑

𝑑𝑡
ln⁡ 𝑅(𝑡) = 𝜆 

 

3. Integrate 

𝑑

𝑑𝑡
ln⁡ 𝑅(𝑡) = −𝜆 

 

Integrate from 0 to 𝑡: 

ln⁡ 𝑅(𝑡) − ln⁡ 𝑅(0) = −𝜆𝑡 
 

4. Use 𝑅(0) = 1 

ln⁡ 𝑅(0) = ln⁡ 1 = 0 ⇒ ln⁡ 𝑅(𝑡) = −𝜆𝑡 
 

5. Exponentiate 

𝑅(𝑡) = 𝑒−𝜆𝑡 
 

6. Failure CDF 

𝐹(𝑡) = Pr⁡(𝑇 ≤ 𝑡) = 1 − 𝑅(𝑡) = 1 − 𝑒−𝜆𝑡 

2.1. Predictive Maintenance Concepts  Predictive maintenance is a maintenance strategy that predicts the occurrence 

of imminent asset failures by applying statistical methods, with the objective of performing maintenance just before asset 

failure. Condition monitoring involves the collection and analysis of data generated during the asset operation with the 

aim of detecting emerging issues. Prognostics is the capability to predict the end-of-life or remaining useful life of an 

asset based on condition monitoring data. RUL is the amount of time remaining before the asset is expected to become 

non-operable. A decision threshold defines a point in time before the end-of-life at which maintenance is performed to 

avoid failure. In contrast to predictive maintenance, preventive maintenance involves fixing or replacing items based on 

a predetermined schedule, while reactive maintenance consists of waiting for an asset to fail and then fixing it. 

Predictive maintenance aims to increase the asset reliability, availability, and maintainability, while decreasing 

maintenance cost and the probability of unforeseen technical breakdowns. Predictive maintenance is beneficial from an 

economic perspective, as asset failures may cost orders of magnitude more than scheduled maintenance. Yet, predictive 

maintenance may also have disadvantages that may prevent its application. For example, it can result in excess 

maintenance if the prediction model is not sufficiently accurate. 
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2.2. Cloud Computing Paradigms for Industrial Applications Energy, connectivity, and data are crucial for industrial 

Internet-of-Things (IIoT) applications, machine-to-machine (M2M) communication, and cloud services. These 

technologies and solutions can be adopted as public cloud, multi-cloud, hybrid-cloud, or edge-cloud paradigms. 

Fundamental cloud-enabled services are Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as 

a Service (SaaS). [Figs. 2-4] These models can resolve numerous issues, particularly in terms of computing (intensive) 

tasks. Maintenance and operation of predictive-data service systems result in network latency, which must be minimized 

by an edge-cloud structure. In addition, data transfer and storage costs associated with predictive methods can accumulate 

to a large amount, especially with process and operation monitoring. A multi-cloud or hybrid-cloud structure can provide 

a cost-effective solution. A flexible deployment paradigm such as public, private, or on-premise cloud can offer a better 

balance between cost and latency. Finally, cloud service and data access must be secure. The benefits of IaaS, PaaS, 

SaaS, edge-cloud configuration, multi-cloud deployment, and a hybrid-cloud architecture solution for predictive 

maintenance models should thus be understood. 

IaaS allocates resources for storage, networking, and computer systems, which can be configured and delivered via 

virtualization technology to meet users' demands. IaaS enables data secure sharing and supports concurrent access by 

Sava Cloud. Users only need to monitor and control their applications and data, without having to configure and manage 

the infrastructure for operating systems, storage, or servers. PaaS provides cloud-enabled hosting of applications, a 

development environment, and services such as deployment, scaling, security, and performance monitoring. Time-series 

data, production quality data, weather information, and data from other cloud services can be used with several prediction 

algorithms through PaaS offerings, such as prediction-as-a-service and APIs. Organizations can focus on developing and 

servicing system applications without having to maintain the underlying resources. SaaS delivers to customers a wide 

range of software and business functions, outsourcing the overhead of maintaining these capabilities. 

 

2.3. Artificial Intelligence Techniques for Prognostics       Prognostics benefit from developments in several AI areas, 

including machine learning, deep learning, physics-informed models, uncertainty quantification, model drift, and data-

driven vs. hybrid methods, the last of which combine physics and data-driven models to leverage their respective 

strengths. As with similar applications, predictive maintenance models are complex, black-box solutions not easily 

interpretable by users. For many systems, particularly safety-critical ones, model reliability must be demonstrated to gain 

user acceptance and increase deployment readiness. This need is supported by ongoing research into explainable AI and 

interpretable machine learning, augmented by post hoc model interpretation methods such as Shapley additive 

explanations (SHAP) and locally interpretable model-agnostic explanations (LIME). Furthermore, model performance 

can drift over time for various reasons, thus necessitating mechanisms for monitoring and retraining, analogous to 

traditional software versioning CI/CD but adapted for ML pipelines. 

In predictive maintenance, key performance indicators (KPIs) encompass prediction performance, application-level 

benefits, costs, and user acceptance. Standard application performance metrics may not adequately capture the end-user 

perspective, especially regarding false alarms. To make AI models trustworthy, it is essential to demonstrate reliability, 

a stance strongly supported by industry practitioners. Particularly in fault-prognostics applications, it is vital to quantify 

prediction uncertainty, thereby allowing the end user to understand the model’s quality and make informed maintenance 

decisions accordingly. 

3. ARCHITECTURAL FRAMEWORKS FOR CLOUD-BASED PREDICTIVE MAINTENANCE 

Architectural frameworks that enable the implementation of predictive maintenance solutions on fully cloud-based or 

hybrid platforms are described. Diverse types of data ingestion and integration across industrial environments are 

examined. Various storage and processing infrastructures that support continuous analytical flows in near real-time or 
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batch mode are contrasted. Finally, the lifecycle management of predictive maintenance models—from creation to 

deployment and monitoring of performance—is investigated. 

Cloud-enabled solutions are built upon an architecture designed to ingest and consolidate data from industrial 

environments to derive predictive maintenance models. Model development can take place in alternative cloud locations 

and follow either an experimental or continuous delivery approach. CI/CD for ML is adopted to support the recurrent 

cycle of monitoring, retraining, and management of the deployed versions, enabling organizations to keep a high level of 

safety and reliability when generating predictions over their assets. 

 

Fig 2: Architectural Frameworks 

3.1. Data Ingestion and Integration in Industrial Environments   Industrial environments generate streams of sensor 

data from multiple sources and protocols, which, for end users not skilled in data engineering, are difficult to use for 

advanced analytics and AI models. Industrial organizations see value in Operational Technology (OT) and Information 

Technology (IT) convergence, yet organizations lack a clear roadmap for implementation and only a few have 

successfully done so. 

Data streams from different devices through different protocols, and data streams emitted by different devices sometimes 

use the same protocol (for instance, Modbus-TCP). Cloud-based solutions are offered by third-party providers, while 

some organizations prefer in-house, on-premises solutions. Retrieving data from discrete systems—or using a proprietary 

sensor protocol—to apply predictive maintenance prediction is relatively straightforward (but requires skill). On the other 

hand, retrieving data from systems frequently emitting data with dynamic quantities or from a production/operation 

system (as in the case of SCADA or production system data) requires data normalization techniques when the data are 

linked together. 

Middleware that provides synchronous or asynchronous availability or streaming processes (via redis or similar 

databases) either for batch or for near real-time advanced analytics is crucial. The challenge lies mainly in the 

discontinuity of data (the streaming process of some sensors is not continuous), the choice of the correct data protocol 

for usage on the cloud, the costs associated with cloud application and data sending, and the cloud company’s offered 

data connection transition time. 

Integration is required when the request comes from users or applications that need all data. For instance, when predictive 

maintenance applications require near real-time data ingestion (as would be the case if the model were embedded in an 

application), a cloud enterprise resource planning package that guarantees data availability, redundancy, and the correct 

solution to critical equipment utilization continues to be necessary. 

3.2. Data Storage and Processing Architectures  The chosen data storage and processing architecture influences the 

entire predictive maintenance solution. Important considerations include data retention, cost, and the degree of real-time 

processing required by end users. Data lakes and data warehouses represent two extremes in data storage, yet other types 

also exist (e.g. time-series databases). Storage requirements vary according to the data type, nature of the processing, and 
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analytics used. Near-real-time analytics generally rely on streaming processing pipelines capable of detecting events or 

trends, while batch analytics generate deeper insights or automate tasks. 

Data lakes support the storage of any type of data without prior structuring, including raw data and model artifacts. These 

lakes can quickly fill up with redundant, obsolete, or trivial data, making their maintenance and cost management 

challenging. The combination of tiered storage with a data-lake-like architecture and a data-retention strategy can 

optimize costs. The use of an upstream time-series database can aid in near-real-time analytics. Time-series databases 

and dedicated processing pipelines simplify near-real-time analytics, particularly monitoring, but their implementation 

reduces overall flexibility. Solutions capable of ingesting all OT and IT data are therefore preferred. 

3.3. Model Development, Deployment, and Lifecycle Management  Cloud-based predictive maintenance relies on a 

series of appropriate AI models that should be built and integrated in a systematic manner. Proper segregation of model-

development responsibilities enhances productivity and quality assurance. Developing models is only the first step; they 

must be deployed in production and continually supported and improved throughout their lifecycles. 

The sequence of these three stages can be adjusted depending on the availability of trained engineers and on the 

operational model. For example, if many maintenance activities are performed in-house, and Azure ML or Amazon 

SageMaker and CI/CD processes for ML are not available, models supporting predictive maintenance may be developed 

in-house. Several cloud services, such as data ingestion and model consumption, may still be enabled by a cloud provider, 

making it easier for the non-operational model developers to plug and play. The change-management team and solution 

architect should monitor this process closely to ensure deployment at the right time and with minimal effort. 

**Model Development** Models require several development cycles to ensure user trust and to enhance interpretability, 

model accuracy, and the reduction of false alarms. Engineering resources for these activities are increasingly scarce; 

therefore, an appropriate strategy should be designed based on the available skills. Incorporating the DevSecOps priority 

when assigning tasks to engineering users further increases model acceptance. DevSecOps adds security controls to the 

traditional DevOps approach, ensuring security and compliance requirements are incorporated early in the development 

process. Integrating development, versioning, testing, and release routines into a single pipeline enables a CI/CD process 

with security embedded. For model-related DevSecOps activities, the priority is on governance, change tracking, model 

retraining, and CI/CD in ML. The first and last items are crucial for all models; the other two increase model usability, 

robustness, and transparency. 

Model deployment is important for all AI models; neglecting it leads to unused models that cannot generate any benefit 

or value. Monitoring the operation of existing models helps identify when to retrain any model based on model drift. 

Essential for time-series data are the triggering conditions for retraining a model. The integration of MI strategies enables 

the automation of model retraining and degradation detection, which helps keep the entire predictive-maintenance 

solution evergreen. 

4. DATA GOVERNANCE, SECURITY, AND COMPLIANCE 

Effectively applying cloud and AI technologies to predictive maintenance depends on systematically addressing the needs 

of data governance, security, and compliance. These are critical enablers of every predictive maintenance project. AI 

models will have little impact if the underlying data have poor quality or lack provenance. Continuous model monitoring 

must ensure data remain relevant over the model’s life cycle. Cloud-based architectures increase exposure to malicious 

actors; protect against exfiltration and guarantee compliance with data privacy regulations. Organizational preparations 

will expedite implementation and reduce user resistance. 

Recent studies and industry reports are convened to describe data governance in cloud-based predictive maintenance. 

Data quality, provenance, security, and regulatory compliance are examined in detail. Important techniques and principles 

relevant to predictive maintenance are identified, together with their interdependencies. Key challenges in 

operationalizing cloud-based predictive maintenance are also highlighted. Cloud service models, artificial intelligence 

solutions, and case studies across different sectors are considered separately. 

Well-known dimensions of data quality include accuracy, completeness, consistency, and timeliness. Poor data quality 

typically correlates with unequal classes, missing values, and noisy features in predictive maintenance problems. Cloud 

services and deployed models are also vulnerable to poisoning and backdoor attacks. Provenance is vital to support all 

https://ijireeice.com
https://ijireeice.com/
https://ijireeice.com/
https://ijireeice.com/
https://ijireeice.com/


ISSN (O) 2321-2004, ISSN (P) 2321-5526 

 
IJIREEICE 

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering 

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 11, Issue 12, December 2023 

DOI:  10.17148/IJIREEICE.2023.111217 

© IJIREEICE             This work is licensed under a Creative Commons Attribution 4.0 International License                 182 

aspects of data governance. Metadata management through catalog services can simplify tasks such as data cleaning. 

Cloud-based predictive maintenance pipelines are often difficult to explain, leading to distrust in maintenance decisions. 

Equation 2: MTBF from 𝝀 

MTBF = 𝔼[𝑇] 
 

1. Use density 𝑓(𝑡) = 𝜆𝑒−𝜆𝑡for 𝑡 ≥ 0 

2. Compute expectation: 

𝔼[𝑇] = ∫ 𝑡 𝜆
∞

0

𝑒−𝜆𝑡 𝑑𝑡 

 

3. Integration by parts: 

Let 𝑢 = 𝑡 ⇒ 𝑑𝑢 = 𝑑𝑡 
Let 𝑑𝑣 = 𝜆𝑒−𝜆𝑡𝑑𝑡 ⇒ 𝑣 = −𝑒−𝜆𝑡 

𝔼[𝑇] = [−𝑡𝑒−𝜆𝑡]0
∞ +∫ 𝑒−𝜆𝑡

∞

0

𝑑𝑡 

 

Boundary term: 

• as 𝑡 → ∞, 𝑡𝑒−𝜆𝑡 → 0 

• at 𝑡 = 0, term is 0 

So boundary term = 0. 

Remaining integral: 

∫ 𝑒−𝜆𝑡
∞

0

𝑑𝑡 = [⬚−
1
𝜆
𝑒−𝜆𝑡]

0

∞

=
1

𝜆
 

 

So: 

MTBF =
1

𝜆
 

4.1. Data Quality and Provenance    Data quality and provenance are core topics for predictive maintenance solutions. 

Poor data quality in training datasets for prognostics and health management models, for example, can lead to inaccurate 

models whose failure on deployed implementations later causes costly and often embarrassing corrective maintenance 

actions. Addressing the following data quality dimensions—accuracy, completeness, consistency, currency, and 

timeliness—early in the development of a predictive maintenance solution is crucial. Completeness is especially relevant 

because the absence of training data can necessitate prohibitive amounts of costlier testing data. The analysis of data 

quality should include the evaluation of the quality of monitoring models and their potential retraining, particularly in 

the presence of label quality issues. 

The monitoring, detection, and diagnosis of data quality issues is known as data quality assessment. Detection tests are 

typically applied to profiles generated by imputation methods to detect temporal patterns missed by the imputer, or in the 

context of sensor data, to flag sensor observations that are inconsistent with the state of the equipment under surveillance. 

Enforcing any model-based sensor fault isolation test fidelity is crucial because failure to do so reads danger into the 

diagnosis, undermining a core function of predictive maintenance solutions. The several types of tests applied include 

trend and derivative limits, ranges, correlation with other sensors, clustering, bounds on residuals from equipment 

monitoring models, and heuristics exploiting common failure causes among the monitored equipment. 

https://ijireeice.com
https://ijireeice.com/
https://ijireeice.com/
https://ijireeice.com/
https://ijireeice.com/


ISSN (O) 2321-2004, ISSN (P) 2321-5526 

 
IJIREEICE 

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering 

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 11, Issue 12, December 2023 

DOI:  10.17148/IJIREEICE.2023.111217 

© IJIREEICE             This work is licensed under a Creative Commons Attribution 4.0 International License                 183 

4.2. Security, Privacy, and Access Control   Data security and confidentiality rank among top management concerns 

when migrating to the cloud. The multitude of parties involved and the underlying shared infrastructure introduce new 

vulnerabilities and exposure points. Threat models must address unauthorized access, loss, and leakage; service 

interruptions; and unauthorized data manipulation and denial of service attacks, along with other types such as backdoor 

or inside attacks. Data security measures encompass secure authentication and authorization, data encryption, and trusted 

sharing approaches. 

Authentication techniques ensure trustworthy identities by verifying user identities and access levels. For sensitive 

premises, multi-factor authentication combining an ID and a password with another layer of security such as facial, voice, 

or finger recognition offers maximum protection. User roles permit restricting connections to authorized devices only. 

Optimization of the ID-password database based on the hidden variable approach enables blocking hackers if wrong 

passwords are entered several times. After granting permission based on user rank, authorization mechanisms regulate 

user behavior and actions to prevent unauthorized access to resources. 

Information protection during storage and access uses advanced encryption standards while data dissemination requires 

a secure data-sharing protocol that assures both data confidentiality and privacy. During multi-user data sharing, a two-

level architecture achieves flexible fine-grained access control and privacy preservation by combining data dummy 

generation and secret sharing. In addition to the security measures applied at the storage level, a comprehensive 

preservation model for cloud-based data storage that equips data with additional security mechanisms and encryption 

capabilities can limit unauthorized access, leakage, and corruption. Privacy-enhancing techniques allow sensitive 

information disclosure while minimizing the risk of identification. 

4.3. Compliance and Risk Management in Industrial Settings  Asset-heavy companies face rising costs, intense 

competition, and stringent reservations from regulators and the public, especially regarding potential environmental 

impacts. Regulatory bodies are enacting laws requiring companies to ensure that their operations adopt sustainability 

throughout the company’s business cycle and hazard assessment procedure. These regulatory obligations, in conjunction 

with market demands for transparency and sustainability, require organizations to have an effective data governance, 

security, and risk management program that can ensure that sensitive data is adequately managed and protected. 

A well-defined compliance management framework is fundamental for the implementation of PKI solutions. Compliance 

checks guarantee that the necessary policies have been defined, that they are relevant across the industry, and that 

specified policies can be correctly assessed and/or verified. The existence of regulatory compliance checks allows ICs to 

justify the substantiation that their information and communication technology (ICT) operations are in accordance with 

recommendations and accepted best practices from the support of inventory operations in a real-time enablement 

approach. The limit of integrity is based on the level of risk acceptance defined in the organization’s risk policy; if the 

data is compromised, the responsibility for the management of the data will define the consequences for its security 

breach. 

5. CASE STUDIES ACROSS INDUSTRIES 

Three illustrative applications of cloud-based predictive maintenance showcase its suitability across multiple industrial 

sectors: fault prognosis of manufacturing equipment, asset health monitoring for energy and utility companies, and 

prediction of transport logistics assets. The selected cases also address common problems encountered in cloud-based 

predictive maintenance implementations, including data scarcity and affordability. At present, predictive maintenance 

has the largest representation in the manufacturing sector, with more than half the activity focused on production systems. 

Yet, success stories have emerged—sometimes at scale—in the energy and utilities, transportation and logistics, and 

telecommunications sectors. 

Predictive maintenance for impending equipment faults is a common concern in manufacturing systems. Downtime 

causative fault data from predictive-maintenance-enabled systems is often scarce. Thus, the ANN+LSTM model can 

ingest many non-faulty operational time-series data among categories of classification to evaluate the fault prognosis for 

an industrial system. Using a tumbling window, the LSTM evaluates the faults in near-real time. For operational readiness 

and reliability, plan, do, check, act strategy-based evaluation is followed. Data scarcity remains a challenge, 

notwithstanding recent provisioning of cloud ML pipelines to speed availability. 
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Fig 3: On Predictive Maintenance in Industry 

5.1. Manufacturing Equipment Fault Prognostics  Cloud and AI Solutions for Predictive Maintenance in Industries 

Predictive maintenance (PdM) has the potential for immense value across multiple sectors and asset categories, evidenced 

by the proliferation of publications and solutions. However, most of the developed solutions are not scalable to real-

world scenarios, where industrial systems tend to be very heterogeneous and have stringent requirements for scalability, 

security, and interpretability. Furthermore, domain-specific custom solutions are usually required due to the specific 

degradation phenomena present in different asset classes. Consequently, while successful applications have been 

reported, there remain many industrial environments where no PdM strategy is in place or where such applications seldom 

scale. A critical impediment for scaling PdM to large-scale industrial environments is the lack of consolidated end-to-

end architectural framings for cloud-based real PdM solutions; for them to be operationalized in industry, it is imperative 

to address the entire PdM lifecycle, from data ingestion to modelling, deployment, monitoring, and retraining. 

The focus is on developing a solid architectural foundation for implementing PdM on cloud-based infrastructures and 

services across several asset categories in asset-heavy industries. The requirement space is consolidated, highlighting the 

relevant quality and scalability dimensions and the corresponding architectural considerations. Three case studies are 

presented covering PdM modelling for fault prognostics in manufacturing equipment across different sectors, with more 

than ten distinct models developed for assets ranging from printing machines to paint ovens, turbines, and CVD reactors. 

A semi-template-based approach, whereby custom models are developed using similar techniques for similar assets, is 

shown to reduce development time and effort. 

5.2. Energy and Utilities Asset Health Monitoring In energy and utilities sectors, an extensive variety of asset types—

most of them characterized by inherent aging—call for condition monitoring and failure diagnosis, together with health 

status prediction (based on Remaining Useful Life, RUL, prognosis). Incorporating real-time data delivery and data-

driven model development, testing, and deployment into the overall process enriches the service offer. These aspects are 

pivotal for the operationalization of the resulting system, which may then scale up to large multi-cloud and multi-tenant 

platforms. Asset behavior triggers several forms of predictive model; class-proximity-based techniques for RUL 

estimation, grounded by a historical database, are under continuous development and application. 

Water and waste-water treatment plants are monitored to avoid dramatic environmental impacts and regulatory sanctions. 

Management of large photovoltaic plants enables failure prediction while considering weather impact on panel 

performance and RUL. Health status monitoring of large electrical machines improves operational safety. Predictive 

strategies of locomotive wheelset health status prognosis are explored to increase operational availability. Planned 

algorithms and models for equipment health monitoring, management optimization, and asset health-chain optimization 

are tailored to the rail sector, while application of a generic machine-learning pipeline for asset RUL prediction is 

presented to aviation. 

https://ijireeice.com
https://ijireeice.com/
https://ijireeice.com/
https://ijireeice.com/
https://ijireeice.com/


ISSN (O) 2321-2004, ISSN (P) 2321-5526 

 
IJIREEICE 

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering 

Impact Factor 8.021Peer-reviewed & Refereed journalVol. 11, Issue 12, December 2023 

DOI:  10.17148/IJIREEICE.2023.111217 

© IJIREEICE             This work is licensed under a Creative Commons Attribution 4.0 International License                 185 

 

5.3. Transportation and Logistics Asset Management  Predictive strategies for transportation and related assets aim 

to forecast both remaining useful life and time until the next failure, thereby quantifying overhauling and maintenance 

needs for a railway company, as well as informing vessel engine replacement priorities. Such models depend on numerous 

data sources—rail sensors, lighting monitoring systems, ferry traffic schedules, passenger forecasting, and maritime 

cloud active detection—involving silos spread across cloud service providers. Integration of local systems with public 

cloud infrastructures allows direct consumption of an AIaaS model for vessel engine replacement at minimal cost, while 

the need to build an on-premises capabilities map and the absence of a shared transport asset database slow down 

predictive service expansion. 

PDM models can significantly improve operations and reduce costs when supporting the decision-making process of 

rolling stocks and assets associated with transportation companies, such as railways, air transport, or maritime cargo. 

Adequate monitoring of assets often requires extensive data provenance. Several PDM models used can bring valuable 

information about the remaining useful life of the assets, as well as the timing of the next overhaul, with an adequate 

number of executions during the monitoring horizon. This predictive knowledge can provide important information to 

management support systems for rolling stocks of a railway company, allowing management to better overhauling and 

maintenance operations. 

Ferry companies make a significant investment in maintaining their vessel engines. Normally, these engines are operated 

in a low-load operation mode, leading to a small number of operating hours, which raises the question of when to replace 

it. A model allows operation in a cost-effective manner, and as a research It uses external data to assist in deciding the 

physical and logical architecture of PDM. Transport operating status and PDM services are provided and managed. 

Transport and logistic organisations have multiple assets, and monitoring several of them will become costly. Hence, a 

map of local required service capabilities and their migration to AIaaS are also defined. 

6. EVALUATION AND VALIDATION METHODOLOGIES 

Cloud and AI Solutions for Predictive Maintenance in Industries 

Evaluation and validation methodologies focus on defining key performance indicators for predictive maintenance, 

experimental design and benchmarking, and explainability and interpretability of AI models. Critical success factors for 

predictive maintenance encompass industrial asset reliability, maintainability, and availability. Reliability quantifies the 

probability of intermittent failure-free operation over an interval, while maintainability assesses the expected time to 

restore service after an inoperable state. Maintaining service availability—including uptime and productivity loss—is 

more costly when relying solely on periodic monitoring. Decommissioning an asset incurs cost while providing no utility. 

Continuous monitoring, especially of health indicators likely to breach thresholds, facilitates more economical preventive 

actions. Other performance vectors include the cost of maintenance actions, as measured by maintenance cost as a 

percentage of total asset replacement cost, and the rate of false alarms generated by predictive-maintenance systems. 

A well-designed experimental setup is necessary to validate predictive-maintenance AI models. Cross-validation retains 

a portion of the data for model evaluation, while data from earlier time intervals serves as training and testing data for 

more recent observations. Conclusions, prioritization, and model fits rely on competent baselines against which to 

measure advances. Transparent benchmark datasets are crucial to reproducibility—a fundamental principle of the 

scientific method. Evaluation and experimental design methodologies, including explainability, consolidate the 

theoretical rationale behind predictive-maintenance AI, validate its implementation in testing cases, and lay a repeatable 

foundation for satisfaction of potential customers, investors, and stakeholders. 
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Equation 3: Steady-state Availability 𝑨 

For a simple two-state up/down system with exponential up-times (rate 𝜆) and repair times (rate 𝜇): 

1. In steady state, fraction of time “up”: 

𝐴 =
mean up time

mean up time + mean down time
 

 

2. Mean up time = MTBF = 1/𝜆 

Mean down time = MTTR = 1/𝜇 

𝐴 =
1/𝜆

1/𝜆 + 1/𝜇
 

 

3. Simplify: 

𝐴 =
1/𝜆

𝜇 + 𝜆
𝜆𝜇

=
𝜇

𝜆 + 𝜇
 

 

So: 

𝐴 =
MTBF

MTBF + MTTR
=

𝜇

𝜆 + 𝜇
 

6.1. Key Performance Indicators for Predictive Maintenance Deployment Engineering and MLOps practices enable 

the transition of predictive maintenance solutions from pilot to operational phase, mirroring the software engineering 

domain. Although distinct from software, the ML-related components warrant a dedicated focus, ensuring smooth 

deployment, monitoring, retraining, and governance, all while satisfying security requirements. 

Key performance indicators guide the selection of assets and model types. Common indicators include reliability, 

availability, maintainability, overall equipment effectiveness, cost savings, and false alarm rates, each with associated 

target values. Generally, reliability, availability, and maintainability are most relevant, as sustainable predictive 

maintenance programs minimize confidence loss and subsequent misdiagnoses. Industrial-Internet-Predictive-

Maintenance-Datasets-Papernot-et-al.-2020. 

Reliability and availability directly affect maintenance costs and business outcomes. As the offering matures, decrease 

in the false alarm rate and improvement of near-term recommendation quality also indicate value delivery. Despite 

incentive misalignment in the risk-reward economic model, reduced diagnosis and repair times lower total cost of 

ownership—an appealing proposition for asset operators. EE-4844841, IoT-based-PPMP-clustering-Kanicar-et-al.-2023, 

Industrial-Internet-Predictive-Maintenance-Datasets-Papernot-et-al.-2020. 

6.2. Experimental Design and Benchmarking Experimental design encompasses the approach to evaluation as well as 

the data that is employed for validation. In supervised learning settings, these aspects are closely intertwined: the 

robustness of performance estimates typically relies on separating the available data into fitting and validation sets. As 

such, a standard train-test split is often employed. A second key aspect of experimental design is benchmarking, which 

is concerned with comparing the performance of the method under evaluation against state-of-the-art techniques. 

Anecdotally, the standard practice for ML is to compute some measure of performance on a well-prepared validation set 

using a trained ML model and report the numerical value of the measure. A more rigorous approach would be to 

implement a train-test split, train the ML model on the training set, compute the measure on the test set, and report the 

average value over many random splits. The emphasis on benchmark datasets and reproducibility is a lesson from the 

field of computer vision and has often been overlooked in the application of ML for fault prognosis. 
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For practically all classes of industrial equipment, data has been collected and labelled for remaining useful life prediction 

and fault classification. RUL data sets have been assembled for the NASA turbofan engines, Turbofan Engine 

Degradation Simulation Dataset and C-MAPSS data sets, UID for bearings, and T-Drive and T-drive-patch for vehicle 

fault prediction. In addition to these standard data sets, a number of custom data sets have been created for specific 

industrial applications. These data sets are generally accompanied by detailed explanations, descriptions of the 

environments, identities of the contributing teams, and published papers. Future datasets should also consider issues of 

data leakage, relevance to key industrial tasks, standardised allowlist templates, and context so that decision-makers will 

have an idea of the reliability of the benchmark. 

6.3. Explainability and Interpretability of AI Models Trustworthiness of predictive maintenance decisions hinges on 

a clear understanding of AI model behavior by maintenance decision-makers. This is especially important because the 

reliability of AI models is generally lower than that of traditional engineering or statistical methods. Consequently, it is 

essential to build trust in AI-based solutions—a tricky task because many state-of-the-art models are black boxes. 

Whenever possible, aimed for AI models that are interpretable (i.e., their inner workings are comprehensible to a human 

analyst) or explainable (their behavior can be approximated or elucidated with the help of simpler models). Furthermore, 

attention was given to the choice of AI methods, model types, and hyperparameters that naturally support explanation 

and interpretations, such as the model agnostic SHAP (SHapley Additive exPlanations) framework. 

Explainable AI frameworks were augmented with domain knowledge and engineering insight, whenever possible and 

applicable, to provide richer information to support the decision-making process, especially in refining potential 

maintenance actions. Employing a range of AI models for each problem was also encouraged (besides the standard one-

vs-all strategy for multiclass problems) and with different degrees of transparency, since this can help to build trust and 

to make a more educated decision when selecting between the different proposed actions. 

7. OPERATIONALIZING CLOUD-BASED PREDICTIVE MAINTENANCE 

Successful deployment of predictive maintenance solution is only the first step; a neglected production system rarely 

behaves as expected. For production systems with stable and known operating conditions, periodic applications of the 

predictive maintenance workflow may lead to sustained benefits. In practice, however, operating conditions can shift due 

to factors such as equipment relocation, redesign, retraining of users, alteration of external drives, and changes in the 

supply chain. When these factors affect the operation of any system, the underlying ML models may stop delivering 

accurate health indications. The concept of MLOps provides a framework for ensuring that predictive maintenance 

models are continuously monitored for performance deterioration, updated periodically when necessary, and deployed 

for use in a controlled and secure manner. Such mechanisms contribute to the sustainability of the solution. 

Continuous production monitoring generates data long after the models have been deployed. The automation of data 

processing—from collection to cleaning, storage, and eventual ingestion in the model development workflow—has a 

direct impact on the overall operational cost of the predictive maintenance ecosystem. Cost optimization therefore focuses 

on data retention policies, the selection of storage tiers adapted to the usage frequency of the data, data compression to 

minimize storage volume, and even the selection of near-real-time-processing capabilities for incoming data when cost-

saving opportunities arise from distributed cloud-edge infrastructures. 

 

Fig 4: Operationalizing Cloud-Based Predictive Maintenance 
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7.1. Deployment Strategies and MLOps Practices Early-stage predictive maintenance solutions typically function as 

research prototypes with limited deployment. Transitioning to operational tools requires rollout plans tailored to the user 

organization; these plans can mirror cloud systems engineering approaches for applications delivered to end users. Once 

operational, cloud-based systems demand continuous delivery of new models, capabilities, and operating code to avoid 

“analysis paralysis” in data science. Regulatory compliance, data security, and model governance shape progress 

delivery. Cloud-based models also require continuous monitoring to detect failures and automating retraining when new 

data render existing models obsolete. 

The quality of production-deployed models should meet the same integrity and security standards as production-deployed 

code. Managing the machine learning back-end as part of a DevOps-like practice—MLOps—helps ensure these standards 

form an integral part of the model delivery process. MLOps covers approval governance, suitable test data sets, retraining 

schedules, and continuous monitoring of deployed models for drift. Sufficiently automated monitoring can trigger model 

retraining to the next stopping point. For example, when the original model was built with a new complete data set, an 

updated model might be required at a lower trigger threshold. Moreover, production deployed models should be easily 

restorable to a sound operational state after a production failure. 

7.2. Data Lifecycle Management and Cost Optimization Data retention policies address how long data should be kept 

in the cloud. Regulatory and legislation compliance can serve as starting points in formulating these policies. Cost 

concerns can then determine whether data is permanently deleted after its retention period has expired, moved to cheaper 

but slower storage when kept longer, or compressed to save storage space. Regular monitoring of data storage costs 

should be carried out, with any sudden or unexpected rise investigated. 

Storage tiering exploits the different cost characteristics of various storage types, allowing a mix of on-premise and cloud-

based storage to be employed. Frequently used current or historical data benefits from local storage for speed, while less 

frequently accessed older data can be archived in the cloud for lower costs. 

Putting data to use in a timely manner can yield cost savings, particularly for time-series data where immediate processing 

can provide actionable insights to avoid or mitigate potential damage. Production faults can therefore be minimised, 

ultimately decreasing or avoiding repair costs. Processing pipelines can conversely be introduced for processing data 

multiple hours after ingestion, enabling batch-based processing of multiple data streams to make use of economies of 

scale. Near-real-time processing that detects and issues alerts on faults can also be implemented, helping to prevent fault 

escalation. 

7.3. Change Management and Organizational Readiness Sensitivity to organizational dynamics is essential for 

sustaining the adoption of cloud-enabled predictive maintenance. Closely aligned with change management, this 

dimension encompasses strategies for stakeholder engagement, carefully-designed training curricula, the creation of 

supportive governance frameworks, and the establishment of a predictive maintenance culture within the enterprise. 

Stakeholders in the change process include platform users and capacity providers, organizations that plan to deploy 

predictive maintenance throughout their facilities using the platform, MLOps practice owners, predictive maintenance 

modeling support teams, and predictive maintenance model performance monitoring teams. Dependence between 

stakeholders suggests that win-lose conditions for one or more parties could generate friction and business risks, while 

catalytic conditions for all would encourage smooth platform operation. Thus, it is crucial to initiate change management 

by proactively identifying all stakeholders and understanding their anticipated conditions for success in relation to the 

perceived benefits. The anticipated consequence of satisfying the identified conditions is sustained long-term use of the 

platform. 

Formal training can support a wide range of needs throughout the entire organization. This applies not just to the intended 

predictive maintenance model users and capacity providers, but also to other stakeholders linked to MLOps practice 

adoption, model deployment, performance monitoring, and platform support. Careful anchoring of training curricula to 

stakeholders’ objectives is vital. A supervised learning audience, for example, needs to understand the essence of platform 

use and the importance of the model performance monitoring team, while the latter may require focused competence in 

change-point detection to effectively handle model drift. Supporting MLOps practice automation through training should 

also engage platform-deployed predictive maintenance models. 
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8. CONCLUSION 

Data engineering—encompassing the selection, ingestion, integration, feature engineering, and delivery of data to 

machine learning and analytics workflows—presents a growing challenge for e-commerce service providers. AI 

techniques—including automated schema detection and adaptation, anomaly detection, and data quality monitoring—

enable data engineering processes to be automated or streamlined. Such automation, in turn, allows data teams to focus 

on solving business problems rather than routine engineering tasks. 

Many aspects of data engineering can be automated using existing technologies; already, a number of e-commerce 

companies have implemented such automated data pipelines. However, true end-to-end automation remains elusive, and 

organizations with heavier pipeline loads see their teams overwhelmed by the demand for simply managing these 

pipelines. For a particular data ecosystem to reach more advanced stages of automation, the architecture must offer 

reusable patterns to enable this level of scaling. 

8.1. Emerging Trends Designing architectures and algorithms capable of automatically completing most of the data 

engineering tasks required by e-commerce AI applications can substantially decrease the time-to-market of new 

personalization engines, recommendation systems, and pricing models, among others. There are, however, several 

emerging trends that companies should bear in mind, for they enable and complement the automation of data engineering 

processes. By looking for these capabilities and technologies when preparing the next AI project, organizations can 

benefit from an even larger amount of automation. A multitude of building blocks and patterns are being developed to 

facilitate, improve, and speed up their integration in enterprise workflows. 

Such data pipelines allow companies to ingest growing amounts of heterogeneous data from different sources—web 

applications, mobile applications, transactional systems, and logs of different kinds. They can assess and automatically 

apply necessary transformations; detect issues on the fly and alert data consumers and data creators; create feature stores 

where algorithms can consume processed data; and manage the entire change life cycle. These are services designed to 

run in a cloud-native fashion. Using abstract definitions such as infrastructure as code to prepare all the necessary 

scaffolding allows different teams to provision the development, testing, and production infra as their own capacity 

grows. 
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