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Abstract: Data engineering refers to the set of activities related to preparing and managing data for analytical workloads,
and it encompasses a wide range of tasks performed on data at different stages of the analytics life cycle—from ingestion
and integration to feature engineering and metadata management. A data engineering pipeline connects various e-
commerce data sources by combining data from multiple operational silos (product catalog, customer accounts, shopping
carts, transaction records, shipping and delivery, payments, etc.) in order to support the development of artificial
intelligence models used for personalized website experiences, recommendation engines, dynamic pricing strategies, and
demand forecasting. Nowadays, the volume of consumed data and the highly dynamic nature of the business logic being
implemented in the underlying model have reached a point where data engineering pipelines need to be automated,
enabling the data operations teams to support the business more efficiently.

Automation at scale is an ambitious goal that requires specialized frameworks and technologies across different areas of
data engineering. These areas are outlined through recurring architectural patterns, and each pattern is built by assembling
the most suitable services and tools on the market from the cloud providers that best match the organization’s business
requirements in order to enable the core automation processes. Reusable building blocks are introduced for key activities
such as cloud-native data platforms, data orchestration and workflow automation, automated schema discovery and
adaptation, and anomaly detection and data quality alerting. Even though these solutions are presented in the context of
personalized experiences and recommendation engines—typical workloads of any large e-commerce organization—they
cover only part of the actual automation. The presented approaches can be applied to any AlI/ML problem requiring a
data plane—such as dynamic pricing and demand forecasting—with the required effort range for implementation.

Keywords: Data Engineering, Automation, Al, E-Commerce, Personalization,Automated Data Pipelines,Al-Driven ETL
/ ELT,Real-Time Data Processing,E-Commerce Data Integration,Data Quality Monitoring,Intelligent Data
Orchestration,Predictive Data Validation,Customer Behavior Analytics,Scalable Cloud Data Warehousing,Anomaly
Detection in Data Streams.

1. INTRODUCTION

In a globalized economy characterized by intense competition and short product life cycles, manufacturing firms are
searching for approaches to reduce operational costs and improve time-to-market, quality, and customer awareness. As
a consequence, optimization of operation and production processes of companies in manufacturing, energy,
transportation, and other industries is becoming crucial. The innovative concept of predictive maintenance (PdM) has
emerged as a viable strategy to fulfill such goals, particularly in asset-intensive sectors. Based on data sourced from
physical health and performance monitoring of equipment and systems, PdM aims to predict the remaining useful life
(RUL) of assets and to make informed, evidence-based decisions on when and how to execute maintenance actions.

The implementation of this predictive strategy entails broader and more complex requirements on data processing than
traditional condition monitoring concepts. It involves processes that cover prognostics development and performance
evaluation, data governance, end-to-end information technology infrastructure and architecture design, cloud placement,
integration with operation technology, and operational deployment considerations. Cloud computing and artificial
intelligence (Al) are the two main technology areas that enable PAM. Yet, despite the ever-increasing interest in and
growing number of implementations of PdM solutions, case studies are still relatively few and often do not validate the
different aspects of the approach in a comprehensive manner.
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Fig 1: Al-Powered Predictive Maintenance for Cloud Operations

1.1. Background and Significance Ubiquitous cloud environments provide strong computational infrastructure with
reduced operational costs in various industry sectors. Within these environments, predictive maintenance allows asset
failures to be detected in advance, enables predictive strategies for service and repair operations, and ultimately improves
system reliability and availability. For implementations that rely on artificial intelligence (Al), however, scalability is
often a key challenge. When assets are located in distributed environments, the volume and velocity of monitored data
can stress the Al model development and governance lifecycle.

To provide solutions for these challenges, specialized architectural designs for cloud-based predictive maintenance
deployments are investigated. These architectures address the data ingestion and processing life cycle; governance and
operationalizing models in production; and infrastructure, data retention, and data processing cost strategies in a single
detailed description. The literature confirms that cloud-based Al predictive maintenance offers many advantages, yet
some recent research results raise concerns about model deployment scalability across industry use cases. Addressing
these issues will help sustain the momentum behind Al predictive maintenance strategies across an increasing range of
industries.

2. BACKGROUND AND THEORETICAL FOUNDATIONS

A concise discussion of predictive maintenance definitions, elements, terminology, and advantages. Predictive
maintenance predicts failures to enable timely, cost-effective action. Additional elements of condition monitoring and
prognostics, and concepts of remaining useful life, decision thresholds, and risk-based predictive maintenance, are
defined. The approach is contrasted with preventive and reactive maintenance. Benefits include cost savings, productivity
increases, load balancing, safety improvements, asset lifespan extension, and reduced environmental impact. Limitations
are related to available data and resources, as well as the maturity of implementation.

A brief overview of suitable cloud computing paradigms and service models. Cloud services can provide scalable IT and
Al resources, data processing capabilities, and storage capacity for predictive maintenance solutions. Cost, latency, and
data sensitivity considerations drive the choice of public, private, or hybrid options, of edge or cloud execution, and of
laaS, PaaS, or SaaS models. Multi-cloud and other hybrid approaches can combine advantages and mitigate risks.
Security and compliance remain paramount.

An outline of Al techniques relevant to predictive maintenance. Machine learning and deep learning detect and predict
asset health states, while physics-informed, hybrid, or ensemble strategies enhance generalization, uncertainty
quantification, and real-world applicability. Model drift is monitored, retraining decisions support continual
improvement, and explainability and interpretability promote user trust and confidence.

Predictive Maintenance Concepts Predictive maintenance refers to maintenance actions dictated by the prediction of
potential failures, enabling timely execution to mitigate risk. In addition to prognostics, predictive maintenance often
encompasses condition monitoring capabilities and the variable of remaining useful life (RUL). RUL estimates inform
the timing of maintenance actions, while decision thresholds apply risk assessment principles to assess when not
performing an action is more costly than performing it. Predictive maintenance can therefore be seen as RUL-based risk-
management of assets.

Equation 1: Reliability R(t), failure distribution F(t), hazard h(t)
Cloud and Al Solutions for Pred...
Assumption (common baseline in PAM KPI sections): constant hazard rate A— exponential lifetime.

1. Definition of hazard rate
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2.1. Predictive Maintenance Concepts Predictive maintenance is a maintenance strategy that predicts the occurrence
of imminent asset failures by applying statistical methods, with the objective of performing maintenance just before asset
failure. Condition monitoring involves the collection and analysis of data generated during the asset operation with the
aim of detecting emerging issues. Prognostics is the capability to predict the end-of-life or remaining useful life of an
asset based on condition monitoring data. RUL is the amount of time remaining before the asset is expected to become
non-operable. A decision threshold defines a point in time before the end-of-life at which maintenance is performed to
avoid failure. In contrast to predictive maintenance, preventive maintenance involves fixing or replacing items based on
a predetermined schedule, while reactive maintenance consists of waiting for an asset to fail and then fixing it.

Predictive maintenance aims to increase the asset reliability, availability, and maintainability, while decreasing
maintenance cost and the probability of unforeseen technical breakdowns. Predictive maintenance is beneficial from an
economic perspective, as asset failures may cost orders of magnitude more than scheduled maintenance. Yet, predictive
maintenance may also have disadvantages that may prevent its application. For example, it can result in excess
maintenance if the prediction model is not sufficiently accurate.
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2.2. Cloud Computing Paradigms for Industrial Applications Energy, connectivity, and data are crucial for industrial
Internet-of-Things (11oT) applications, machine-to-machine (M2M) communication, and cloud services. These
technologies and solutions can be adopted as public cloud, multi-cloud, hybrid-cloud, or edge-cloud paradigms.
Fundamental cloud-enabled services are Infrastructure as a Service (1aaS), Platform as a Service (PaaS), and Software as
a Service (SaaS). [Figs. 2-4] These models can resolve numerous issues, particularly in terms of computing (intensive)
tasks. Maintenance and operation of predictive-data service systems result in network latency, which must be minimized
by an edge-cloud structure. In addition, data transfer and storage costs associated with predictive methods can accumulate
to a large amount, especially with process and operation monitoring. A multi-cloud or hybrid-cloud structure can provide
a cost-effective solution. A flexible deployment paradigm such as public, private, or on-premise cloud can offer a better
balance between cost and latency. Finally, cloud service and data access must be secure. The benefits of laaS, PaaS,
SaaS, edge-cloud configuration, multi-cloud deployment, and a hybrid-cloud architecture solution for predictive
maintenance models should thus be understood.

laaS allocates resources for storage, networking, and computer systems, which can be configured and delivered via
virtualization technology to meet users' demands. laaS enables data secure sharing and supports concurrent access by
Sava Cloud. Users only need to monitor and control their applications and data, without having to configure and manage
the infrastructure for operating systems, storage, or servers. PaaS provides cloud-enabled hosting of applications, a
development environment, and services such as deployment, scaling, security, and performance monitoring. Time-series
data, production quality data, weather information, and data from other cloud services can be used with several prediction
algorithms through Paa$S offerings, such as prediction-as-a-service and APIs. Organizations can focus on developing and
servicing system applications without having to maintain the underlying resources. SaaS delivers to customers a wide
range of software and business functions, outsourcing the overhead of maintaining these capabilities.

Illustrative Reliability Curve (Exponential Lifetime)
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2.3. Artificial Intelligence Techniques for Prognostics ~ Prognostics benefit from developments in several Al areas,
including machine learning, deep learning, physics-informed models, uncertainty quantification, model drift, and data-
driven vs. hybrid methods, the last of which combine physics and data-driven models to leverage their respective
strengths. As with similar applications, predictive maintenance models are complex, black-box solutions not easily
interpretable by users. For many systems, particularly safety-critical ones, model reliability must be demonstrated to gain
user acceptance and increase deployment readiness. This need is supported by ongoing research into explainable Al and
interpretable machine learning, augmented by post hoc model interpretation methods such as Shapley additive
explanations (SHAP) and locally interpretable model-agnostic explanations (LIME). Furthermore, model performance
can drift over time for various reasons, thus necessitating mechanisms for monitoring and retraining, analogous to
traditional software versioning CI/CD but adapted for ML pipelines.

In predictive maintenance, key performance indicators (KPIs) encompass prediction performance, application-level
benefits, costs, and user acceptance. Standard application performance metrics may not adequately capture the end-user
perspective, especially regarding false alarms. To make Al models trustworthy, it is essential to demonstrate reliability,
a stance strongly supported by industry practitioners. Particularly in fault-prognostics applications, it is vital to quantify
prediction uncertainty, thereby allowing the end user to understand the model’s quality and make informed maintenance
decisions accordingly.

3. ARCHITECTURAL FRAMEWORKS FOR CLOUD-BASED PREDICTIVE MAINTENANCE
Architectural frameworks that enable the implementation of predictive maintenance solutions on fully cloud-based or

hybrid platforms are described. Diverse types of data ingestion and integration across industrial environments are
examined. Various storage and processing infrastructures that support continuous analytical flows in near real-time or
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batch mode are contrasted. Finally, the lifecycle management of predictive maintenance models—from creation to
deployment and monitoring of performance—is investigated.

Cloud-enabled solutions are built upon an architecture designed to ingest and consolidate data from industrial
environments to derive predictive maintenance models. Model development can take place in alternative cloud locations
and follow either an experimental or continuous delivery approach. CI/CD for ML is adopted to support the recurrent
cycle of monitoring, retraining, and management of the deployed versions, enabling organizations to keep a high level of
safety and reliability when generating predictions over their assets.
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Fig 2: Architectural Frameworks

3.1. Data Ingestion and Integration in Industrial Environments Industrial environments generate streams of sensor
data from multiple sources and protocols, which, for end users not skilled in data engineering, are difficult to use for
advanced analytics and Al models. Industrial organizations see value in Operational Technology (OT) and Information
Technology (IT) convergence, yet organizations lack a clear roadmap for implementation and only a few have
successfully done so.

Data streams from different devices through different protocols, and data streams emitted by different devices sometimes
use the same protocol (for instance, Modbus-TCP). Cloud-based solutions are offered by third-party providers, while
some organizations prefer in-house, on-premises solutions. Retrieving data from discrete systems—or using a proprietary
sensor protocol—to apply predictive maintenance prediction is relatively straightforward (but requires skill). On the other
hand, retrieving data from systems frequently emitting data with dynamic quantities or from a production/operation
system (as in the case of SCADA or production system data) requires data normalization techniques when the data are
linked together.

Middleware that provides synchronous or asynchronous availability or streaming processes (via redis or similar
databases) either for batch or for near real-time advanced analytics is crucial. The challenge lies mainly in the
discontinuity of data (the streaming process of some sensors is not continuous), the choice of the correct data protocol
for usage on the cloud, the costs associated with cloud application and data sending, and the cloud company’s offered
data connection transition time.

Integration is required when the request comes from users or applications that need all data. For instance, when predictive
maintenance applications require near real-time data ingestion (as would be the case if the model were embedded in an
application), a cloud enterprise resource planning package that guarantees data availability, redundancy, and the correct
solution to critical equipment utilization continues to be necessary.

3.2. Data Storage and Processing Architectures The chosen data storage and processing architecture influences the
entire predictive maintenance solution. Important considerations include data retention, cost, and the degree of real-time
processing required by end users. Data lakes and data warehouses represent two extremes in data storage, yet other types
also exist (e.g. time-series databases). Storage requirements vary according to the data type, nature of the processing, and
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analytics used. Near-real-time analytics generally rely on streaming processing pipelines capable of detecting events or
trends, while batch analytics generate deeper insights or automate tasks.

Data lakes support the storage of any type of data without prior structuring, including raw data and model artifacts. These
lakes can quickly fill up with redundant, obsolete, or trivial data, making their maintenance and cost management
challenging. The combination of tiered storage with a data-lake-like architecture and a data-retention strategy can
optimize costs. The use of an upstream time-series database can aid in near-real-time analytics. Time-series databases
and dedicated processing pipelines simplify near-real-time analytics, particularly monitoring, but their implementation
reduces overall flexibility. Solutions capable of ingesting all OT and IT data are therefore preferred.

3.3. Model Development, Deployment, and Lifecycle Management Cloud-based predictive maintenance relies on a
series of appropriate Al models that should be built and integrated in a systematic manner. Proper segregation of model-
development responsibilities enhances productivity and quality assurance. Developing models is only the first step; they
must be deployed in production and continually supported and improved throughout their lifecycles.

The sequence of these three stages can be adjusted depending on the availability of trained engineers and on the
operational model. For example, if many maintenance activities are performed in-house, and Azure ML or Amazon
SageMaker and CI/CD processes for ML are not available, models supporting predictive maintenance may be developed
in-house. Several cloud services, such as data ingestion and model consumption, may still be enabled by a cloud provider,
making it easier for the non-operational model developers to plug and play. The change-management team and solution
architect should monitor this process closely to ensure deployment at the right time and with minimal effort.

**Model Development** Models require several development cycles to ensure user trust and to enhance interpretability,
model accuracy, and the reduction of false alarms. Engineering resources for these activities are increasingly scarce;
therefore, an appropriate strategy should be designed based on the available skills. Incorporating the DevSecOps priority
when assigning tasks to engineering users further increases model acceptance. DevSecOps adds security controls to the
traditional DevOps approach, ensuring security and compliance requirements are incorporated early in the development
process. Integrating development, versioning, testing, and release routines into a single pipeline enables a CI/CD process
with security embedded. For model-related DevSecOps activities, the priority is on governance, change tracking, model
retraining, and CI/CD in ML. The first and last items are crucial for all models; the other two increase model usability,
robustness, and transparency.

Model deployment is important for all Al models; neglecting it leads to unused models that cannot generate any benefit
or value. Monitoring the operation of existing models helps identify when to retrain any model based on model drift.
Essential for time-series data are the triggering conditions for retraining a model. The integration of Ml strategies enables
the automation of model retraining and degradation detection, which helps keep the entire predictive-maintenance
solution evergreen.

4. DATA GOVERNANCE, SECURITY, AND COMPLIANCE

Effectively applying cloud and Al technologies to predictive maintenance depends on systematically addressing the needs
of data governance, security, and compliance. These are critical enablers of every predictive maintenance project. Al
models will have little impact if the underlying data have poor quality or lack provenance. Continuous model monitoring
must ensure data remain relevant over the model’s life cycle. Cloud-based architectures increase exposure to malicious
actors; protect against exfiltration and guarantee compliance with data privacy regulations. Organizational preparations
will expedite implementation and reduce user resistance.

Recent studies and industry reports are convened to describe data governance in cloud-based predictive maintenance.
Data quality, provenance, security, and regulatory compliance are examined in detail. Important techniques and principles
relevant to predictive maintenance are identified, together with their interdependencies. Key challenges in
operationalizing cloud-based predictive maintenance are also highlighted. Cloud service models, artificial intelligence
solutions, and case studies across different sectors are considered separately.

Well-known dimensions of data quality include accuracy, completeness, consistency, and timeliness. Poor data quality

typically correlates with unequal classes, missing values, and noisy features in predictive maintenance problems. Cloud
services and deployed models are also vulnerable to poisoning and backdoor attacks. Provenance is vital to support all
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aspects of data governance. Metadata management through catalog services can simplify tasks such as data cleaning.
Cloud-based predictive maintenance pipelines are often difficult to explain, leading to distrust in maintenance decisions.

Equation 2: MTBF from 4
MTBF = E[T]

1. Use density f(t) = de **fort > 0

2. Compute expectation:

E[T] :f tdle M dt
0

3. Integration by parts:
Letu=t=>du=dt
Letdv = e Mdt > v = —e™H

E[T] = [-te ™ ]® + f e M dt

Boundary term:
e ast—o oo te M0

o att=0,termisO
So boundary term = 0.

Remaining integral:

So:

MTBF =

e s

4.1. Data Quality and Provenance Data quality and provenance are core topics for predictive maintenance solutions.
Poor data quality in training datasets for prognostics and health management models, for example, can lead to inaccurate
models whose failure on deployed implementations later causes costly and often embarrassing corrective maintenance
actions. Addressing the following data quality dimensions—accuracy, completeness, consistency, currency, and
timeliness—early in the development of a predictive maintenance solution is crucial. Completeness is especially relevant
because the absence of training data can necessitate prohibitive amounts of costlier testing data. The analysis of data
quality should include the evaluation of the quality of monitoring models and their potential retraining, particularly in
the presence of label quality issues.

The monitoring, detection, and diagnosis of data quality issues is known as data quality assessment. Detection tests are
typically applied to profiles generated by imputation methods to detect temporal patterns missed by the imputer, or in the
context of sensor data, to flag sensor observations that are inconsistent with the state of the equipment under surveillance.
Enforcing any model-based sensor fault isolation test fidelity is crucial because failure to do so reads danger into the
diagnosis, undermining a core function of predictive maintenance solutions. The several types of tests applied include
trend and derivative limits, ranges, correlation with other sensors, clustering, bounds on residuals from equipment
monitoring models, and heuristics exploiting common failure causes among the monitored equipment.
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4.2. Security, Privacy, and Access Control Data security and confidentiality rank among top management concerns
when migrating to the cloud. The multitude of parties involved and the underlying shared infrastructure introduce new
vulnerabilities and exposure points. Threat models must address unauthorized access, loss, and leakage; service
interruptions; and unauthorized data manipulation and denial of service attacks, along with other types such as backdoor
or inside attacks. Data security measures encompass secure authentication and authorization, data encryption, and trusted
sharing approaches.

Authentication techniques ensure trustworthy identities by verifying user identities and access levels. For sensitive
premises, multi-factor authentication combining an ID and a password with another layer of security such as facial, voice,
or finger recognition offers maximum protection. User roles permit restricting connections to authorized devices only.
Optimization of the ID-password database based on the hidden variable approach enables blocking hackers if wrong
passwords are entered several times. After granting permission based on user rank, authorization mechanisms regulate
user behavior and actions to prevent unauthorized access to resources.

Information protection during storage and access uses advanced encryption standards while data dissemination requires
a secure data-sharing protocol that assures both data confidentiality and privacy. During multi-user data sharing, a two-
level architecture achieves flexible fine-grained access control and privacy preservation by combining data dummy
generation and secret sharing. In addition to the security measures applied at the storage level, a comprehensive
preservation model for cloud-based data storage that equips data with additional security mechanisms and encryption
capabilities can limit unauthorized access, leakage, and corruption. Privacy-enhancing techniques allow sensitive
information disclosure while minimizing the risk of identification.

4.3. Compliance and Risk Management in Industrial Settings Asset-heavy companies face rising costs, intense
competition, and stringent reservations from regulators and the public, especially regarding potential environmental
impacts. Regulatory bodies are enacting laws requiring companies to ensure that their operations adopt sustainability
throughout the company’s business cycle and hazard assessment procedure. These regulatory obligations, in conjunction
with market demands for transparency and sustainability, require organizations to have an effective data governance,
security, and risk management program that can ensure that sensitive data is adequately managed and protected.

A well-defined compliance management framework is fundamental for the implementation of PKI solutions. Compliance
checks guarantee that the necessary policies have been defined, that they are relevant across the industry, and that
specified policies can be correctly assessed and/or verified. The existence of regulatory compliance checks allows ICs to
justify the substantiation that their information and communication technology (ICT) operations are in accordance with
recommendations and accepted best practices from the support of inventory operations in a real-time enablement
approach. The limit of integrity is based on the level of risk acceptance defined in the organization’s risk policy; if the
data is compromised, the responsibility for the management of the data will define the consequences for its security
breach.

5. CASE STUDIES ACROSS INDUSTRIES

Three illustrative applications of cloud-based predictive maintenance showcase its suitability across multiple industrial
sectors: fault prognosis of manufacturing equipment, asset health monitoring for energy and utility companies, and
prediction of transport logistics assets. The selected cases also address common problems encountered in cloud-based
predictive maintenance implementations, including data scarcity and affordability. At present, predictive maintenance
has the largest representation in the manufacturing sector, with more than half the activity focused on production systems.
Yet, success stories have emerged—sometimes at scale—in the energy and utilities, transportation and logistics, and
telecommunications sectors.

Predictive maintenance for impending equipment faults is a common concern in manufacturing systems. Downtime
causative fault data from predictive-maintenance-enabled systems is often scarce. Thus, the ANN+LSTM model can
ingest many non-faulty operational time-series data among categories of classification to evaluate the fault prognosis for
an industrial system. Using a tumbling window, the LSTM evaluates the faults in near-real time. For operational readiness
and reliability, plan, do, check, act strategy-based evaluation is followed. Data scarcity remains a challenge,
notwithstanding recent provisioning of cloud ML pipelines to speed availability.

© JIREEICE This work is licensed under a Creative Commons Attribution 4.0 International License 183


https://ijireeice.com
https://ijireeice.com/
https://ijireeice.com/
https://ijireeice.com/
https://ijireeice.com/

IJIREEICE ISSN (O) 2321-2004, ISSN (P) 2321-5526

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering
Impact Factor 8.021 :: Peer-reviewed & Refereed journal ::< Vol. 11, Issue 12, December 2023
DOI: 10.17148/IJIREEICE.2023.111217

‘Duration of operation before failure (DEFAD)
Remaining useful life (RUL)
* Models based on physical models
Data-driven models.

BIG DATA

Expertise

Information

process

+  Conditional maintenance
strategies (CBM) and / of
prediction

Fig 3: On Predictive Maintenance in Industry

5.1. Manufacturing Equipment Fault Prognostics Cloud and Al Solutions for Predictive Maintenance in Industries

Predictive maintenance (PdM) has the potential for immense value across multiple sectors and asset categories, evidenced
by the proliferation of publications and solutions. However, most of the developed solutions are not scalable to real-
world scenarios, where industrial systems tend to be very heterogeneous and have stringent requirements for scalability,
security, and interpretability. Furthermore, domain-specific custom solutions are usually required due to the specific
degradation phenomena present in different asset classes. Consequently, while successful applications have been
reported, there remain many industrial environments where no PdM strategy is in place or where such applications seldom
scale. A critical impediment for scaling PdM to large-scale industrial environments is the lack of consolidated end-to-
end architectural framings for cloud-based real PdM solutions; for them to be operationalized in industry, it is imperative
to address the entire PdM lifecycle, from data ingestion to modelling, deployment, monitoring, and retraining.

The focus is on developing a solid architectural foundation for implementing PdM on cloud-based infrastructures and
services across several asset categories in asset-heavy industries. The requirement space is consolidated, highlighting the
relevant quality and scalability dimensions and the corresponding architectural considerations. Three case studies are
presented covering PAM modelling for fault prognostics in manufacturing equipment across different sectors, with more
than ten distinct models developed for assets ranging from printing machines to paint ovens, turbines, and CVD reactors.
A semi-template-based approach, whereby custom models are developed using similar techniques for similar assets, is
shown to reduce development time and effort.

5.2. Energy and Utilities Asset Health Monitoring In energy and utilities sectors, an extensive variety of asset types—
most of them characterized by inherent aging—call for condition monitoring and failure diagnosis, together with health
status prediction (based on Remaining Useful Life, RUL, prognosis). Incorporating real-time data delivery and data-
driven model development, testing, and deployment into the overall process enriches the service offer. These aspects are
pivotal for the operationalization of the resulting system, which may then scale up to large multi-cloud and multi-tenant
platforms. Asset behavior triggers several forms of predictive model; class-proximity-based techniques for RUL
estimation, grounded by a historical database, are under continuous development and application.

Water and waste-water treatment plants are monitored to avoid dramatic environmental impacts and regulatory sanctions.
Management of large photovoltaic plants enables failure prediction while considering weather impact on panel
performance and RUL. Health status monitoring of large electrical machines improves operational safety. Predictive
strategies of locomotive wheelset health status prognosis are explored to increase operational availability. Planned
algorithms and models for equipment health monitoring, management optimization, and asset health-chain optimization
are tailored to the rail sector, while application of a generic machine-learning pipeline for asset RUL prediction is
presented to aviation.
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5.3. Transportation and Logistics Asset Management Predictive strategies for transportation and related assets aim
to forecast both remaining useful life and time until the next failure, thereby quantifying overhauling and maintenance
needs for a railway company, as well as informing vessel engine replacement priorities. Such models depend on numerous
data sources—rail sensors, lighting monitoring systems, ferry traffic schedules, passenger forecasting, and maritime
cloud active detection—involving silos spread across cloud service providers. Integration of local systems with public
cloud infrastructures allows direct consumption of an AlaaS model for vessel engine replacement at minimal cost, while
the need to build an on-premises capabilities map and the absence of a shared transport asset database slow down
predictive service expansion.

PDM models can significantly improve operations and reduce costs when supporting the decision-making process of
rolling stocks and assets associated with transportation companies, such as railways, air transport, or maritime cargo.
Adequate monitoring of assets often requires extensive data provenance. Several PDM models used can bring valuable
information about the remaining useful life of the assets, as well as the timing of the next overhaul, with an adequate
number of executions during the monitoring horizon. This predictive knowledge can provide important information to
management support systems for rolling stocks of a railway company, allowing management to better overhauling and
maintenance operations.

Ferry companies make a significant investment in maintaining their vessel engines. Normally, these engines are operated
in a low-load operation mode, leading to a small number of operating hours, which raises the question of when to replace
it. A model allows operation in a cost-effective manner, and as a research It uses external data to assist in deciding the
physical and logical architecture of PDM. Transport operating status and PDM services are provided and managed.
Transport and logistic organisations have multiple assets, and monitoring several of them will become costly. Hence, a
map of local required service capabilities and their migration to AlaasS are also defined.

6. EVALUATION AND VALIDATION METHODOLOGIES
Cloud and Al Solutions for Predictive Maintenance in Industries

Evaluation and validation methodologies focus on defining key performance indicators for predictive maintenance,
experimental design and benchmarking, and explainability and interpretability of Al models. Critical success factors for
predictive maintenance encompass industrial asset reliability, maintainability, and availability. Reliability quantifies the
probability of intermittent failure-free operation over an interval, while maintainability assesses the expected time to
restore service after an inoperable state. Maintaining service availability—including uptime and productivity loss—is
more costly when relying solely on periodic monitoring. Decommissioning an asset incurs cost while providing no utility.
Continuous monitoring, especially of health indicators likely to breach thresholds, facilitates more economical preventive
actions. Other performance vectors include the cost of maintenance actions, as measured by maintenance cost as a
percentage of total asset replacement cost, and the rate of false alarms generated by predictive-maintenance systems.

A well-designed experimental setup is necessary to validate predictive-maintenance Al models. Cross-validation retains
a portion of the data for model evaluation, while data from earlier time intervals serves as training and testing data for
more recent observations. Conclusions, prioritization, and model fits rely on competent baselines against which to
measure advances. Transparent benchmark datasets are crucial to reproducibility—a fundamental principle of the
scientific method. Evaluation and experimental design methodologies, including explainability, consolidate the
theoretical rationale behind predictive-maintenance Al, validate its implementation in testing cases, and lay a repeatable
foundation for satisfaction of potential customers, investors, and stakeholders.
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Equation 3: Steady-state Availability A
For a simple two-state up/down system with exponential up-times (rate 1) and repair times (rate u):
1. In steady state, fraction of time “up”:

mean up time

mean up time + mean down time

2. Meanuptime=MTBF =1/1
Mean down time = MTTR = 1/u
1/
A=A
1/A+1/u

3. Simplify:

1/ U
A=—-=——
U+ A+u

Au

So:

A= MTBF o
" MTBF+MTTR  A+upu

6.1. Key Performance Indicators for Predictive Maintenance Deployment Engineering and MLOps practices enable
the transition of predictive maintenance solutions from pilot to operational phase, mirroring the software engineering
domain. Although distinct from software, the ML-related components warrant a dedicated focus, ensuring smooth
deployment, monitoring, retraining, and governance, all while satisfying security requirements.

Key performance indicators guide the selection of assets and model types. Common indicators include reliability,
availability, maintainability, overall equipment effectiveness, cost savings, and false alarm rates, each with associated
target values. Generally, reliability, availability, and maintainability are most relevant, as sustainable predictive
maintenance programs minimize confidence loss and subsequent misdiagnoses. Industrial-Internet-Predictive-
Maintenance-Datasets-Papernot-et-al.-2020.

Reliability and availability directly affect maintenance costs and business outcomes. As the offering matures, decrease
in the false alarm rate and improvement of near-term recommendation quality also indicate value delivery. Despite
incentive misalignment in the risk-reward economic model, reduced diagnosis and repair times lower total cost of
ownership—an appealing proposition for asset operators. EE-4844841, loT-based-PPMP-clustering-Kanicar-et-al.-2023,
Industrial-Internet-Predictive-Maintenance-Datasets-Papernot-et-al.-2020.

6.2. Experimental Design and Benchmarking Experimental design encompasses the approach to evaluation as well as
the data that is employed for validation. In supervised learning settings, these aspects are closely intertwined: the
robustness of performance estimates typically relies on separating the available data into fitting and validation sets. As
such, a standard train-test split is often employed. A second key aspect of experimental design is benchmarking, which
is concerned with comparing the performance of the method under evaluation against state-of-the-art techniques.
Anecdotally, the standard practice for ML is to compute some measure of performance on a well-prepared validation set
using a trained ML model and report the numerical value of the measure. A more rigorous approach would be to
implement a train-test split, train the ML model on the training set, compute the measure on the test set, and report the
average value over many random splits. The emphasis on benchmark datasets and reproducibility is a lesson from the
field of computer vision and has often been overlooked in the application of ML for fault prognosis.
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For practically all classes of industrial equipment, data has been collected and labelled for remaining useful life prediction
and fault classification. RUL data sets have been assembled for the NASA turbofan engines, Turbofan Engine
Degradation Simulation Dataset and C-MAPSS data sets, UID for bearings, and T-Drive and T-drive-patch for vehicle
fault prediction. In addition to these standard data sets, a number of custom data sets have been created for specific
industrial applications. These data sets are generally accompanied by detailed explanations, descriptions of the
environments, identities of the contributing teams, and published papers. Future datasets should also consider issues of
data leakage, relevance to key industrial tasks, standardised allowlist templates, and context so that decision-makers will
have an idea of the reliability of the benchmark.

6.3. Explainability and Interpretability of Al Models Trustworthiness of predictive maintenance decisions hinges on
a clear understanding of Al model behavior by maintenance decision-makers. This is especially important because the
reliability of Al models is generally lower than that of traditional engineering or statistical methods. Consequently, it is
essential to build trust in Al-based solutions—a tricky task because many state-of-the-art models are black boxes.
Whenever possible, aimed for Al models that are interpretable (i.e., their inner workings are comprehensible to a human
analyst) or explainable (their behavior can be approximated or elucidated with the help of simpler models). Furthermore,
attention was given to the choice of Al methods, model types, and hyperparameters that naturally support explanation
and interpretations, such as the model agnostic SHAP (SHapley Additive exPlanations) framework.

Explainable Al frameworks were augmented with domain knowledge and engineering insight, whenever possible and
applicable, to provide richer information to support the decision-making process, especially in refining potential
maintenance actions. Employing a range of Al models for each problem was also encouraged (besides the standard one-
vs-all strategy for multiclass problems) and with different degrees of transparency, since this can help to build trust and
to make a more educated decision when selecting between the different proposed actions.

7. OPERATIONALIZING CLOUD-BASED PREDICTIVE MAINTENANCE

Successful deployment of predictive maintenance solution is only the first step; a neglected production system rarely
behaves as expected. For production systems with stable and known operating conditions, periodic applications of the
predictive maintenance workflow may lead to sustained benefits. In practice, however, operating conditions can shift due
to factors such as equipment relocation, redesign, retraining of users, alteration of external drives, and changes in the
supply chain. When these factors affect the operation of any system, the underlying ML models may stop delivering
accurate health indications. The concept of MLOps provides a framework for ensuring that predictive maintenance
models are continuously monitored for performance deterioration, updated periodically when necessary, and deployed
for use in a controlled and secure manner. Such mechanisms contribute to the sustainability of the solution.

Continuous production monitoring generates data long after the models have been deployed. The automation of data
processing—from collection to cleaning, storage, and eventual ingestion in the model development workflow—has a
direct impact on the overall operational cost of the predictive maintenance ecosystem. Cost optimization therefore focuses
on data retention policies, the selection of storage tiers adapted to the usage frequency of the data, data compression to
minimize storage volume, and even the selection of near-real-time-processing capabilities for incoming data when cost-
saving opportunities arise from distributed cloud-edge infrastructures.

Fig 4: Operationalizing Cloud-Based Predictive Maintenance
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7.1. Deployment Strategies and MLOps Practices Early-stage predictive maintenance solutions typically function as
research prototypes with limited deployment. Transitioning to operational tools requires rollout plans tailored to the user
organization; these plans can mirror cloud systems engineering approaches for applications delivered to end users. Once
operational, cloud-based systems demand continuous delivery of new models, capabilities, and operating code to avoid
“analysis paralysis” in data science. Regulatory compliance, data security, and model governance shape progress
delivery. Cloud-based models also require continuous monitoring to detect failures and automating retraining when new
data render existing models obsolete.

The quality of production-deployed models should meet the same integrity and security standards as production-deployed
code. Managing the machine learning back-end as part of a DevOps-like practice—MLOps—helps ensure these standards
form an integral part of the model delivery process. MLOps covers approval governance, suitable test data sets, retraining
schedules, and continuous monitoring of deployed models for drift. Sufficiently automated monitoring can trigger model
retraining to the next stopping point. For example, when the original model was built with a new complete data set, an
updated model might be required at a lower trigger threshold. Moreover, production deployed models should be easily
restorable to a sound operational state after a production failure.

7.2. Data Lifecycle Management and Cost Optimization Data retention policies address how long data should be kept
in the cloud. Regulatory and legislation compliance can serve as starting points in formulating these policies. Cost
concerns can then determine whether data is permanently deleted after its retention period has expired, moved to cheaper
but slower storage when kept longer, or compressed to save storage space. Regular monitoring of data storage costs
should be carried out, with any sudden or unexpected rise investigated.

Storage tiering exploits the different cost characteristics of various storage types, allowing a mix of on-premise and cloud-
based storage to be employed. Frequently used current or historical data benefits from local storage for speed, while less
frequently accessed older data can be archived in the cloud for lower costs.

Putting data to use in a timely manner can yield cost savings, particularly for time-series data where immediate processing
can provide actionable insights to avoid or mitigate potential damage. Production faults can therefore be minimised,
ultimately decreasing or avoiding repair costs. Processing pipelines can conversely be introduced for processing data
multiple hours after ingestion, enabling batch-based processing of multiple data streams to make use of economies of
scale. Near-real-time processing that detects and issues alerts on faults can also be implemented, helping to prevent fault
escalation.

7.3. Change Management and Organizational Readiness Sensitivity to organizational dynamics is essential for
sustaining the adoption of cloud-enabled predictive maintenance. Closely aligned with change management, this
dimension encompasses strategies for stakeholder engagement, carefully-designed training curricula, the creation of
supportive governance frameworks, and the establishment of a predictive maintenance culture within the enterprise.

Stakeholders in the change process include platform users and capacity providers, organizations that plan to deploy
predictive maintenance throughout their facilities using the platform, MLOps practice owners, predictive maintenance
modeling support teams, and predictive maintenance model performance monitoring teams. Dependence between
stakeholders suggests that win-lose conditions for one or more parties could generate friction and business risks, while
catalytic conditions for all would encourage smooth platform operation. Thus, it is crucial to initiate change management
by proactively identifying all stakeholders and understanding their anticipated conditions for success in relation to the
perceived benefits. The anticipated consequence of satisfying the identified conditions is sustained long-term use of the
platform.

Formal training can support a wide range of needs throughout the entire organization. This applies not just to the intended
predictive maintenance model users and capacity providers, but also to other stakeholders linked to MLOps practice
adoption, model deployment, performance monitoring, and platform support. Careful anchoring of training curricula to
stakeholders’ objectives is vital. A supervised learning audience, for example, needs to understand the essence of platform
use and the importance of the model performance monitoring team, while the latter may require focused competence in
change-point detection to effectively handle model drift. Supporting MLOps practice automation through training should
also engage platform-deployed predictive maintenance models.
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8. CONCLUSION

Data engineering—encompassing the selection, ingestion, integration, feature engineering, and delivery of data to
machine learning and analytics workflows—presents a growing challenge for e-commerce service providers. Al
techniques—including automated schema detection and adaptation, anomaly detection, and data quality monitoring—
enable data engineering processes to be automated or streamlined. Such automation, in turn, allows data teams to focus
on solving business problems rather than routine engineering tasks.

Many aspects of data engineering can be automated using existing technologies; already, a humber of e-commerce
companies have implemented such automated data pipelines. However, true end-to-end automation remains elusive, and
organizations with heavier pipeline loads see their teams overwhelmed by the demand for simply managing these
pipelines. For a particular data ecosystem to reach more advanced stages of automation, the architecture must offer
reusable patterns to enable this level of scaling.

8.1. Emerging Trends Designing architectures and algorithms capable of automatically completing most of the data
engineering tasks required by e-commerce Al applications can substantially decrease the time-to-market of new
personalization engines, recommendation systems, and pricing models, among others. There are, however, several
emerging trends that companies should bear in mind, for they enable and complement the automation of data engineering
processes. By looking for these capabilities and technologies when preparing the next Al project, organizations can
benefit from an even larger amount of automation. A multitude of building blocks and patterns are being developed to
facilitate, improve, and speed up their integration in enterprise workflows.

Such data pipelines allow companies to ingest growing amounts of heterogeneous data from different sources—web
applications, mobile applications, transactional systems, and logs of different kinds. They can assess and automatically
apply necessary transformations; detect issues on the fly and alert data consumers and data creators; create feature stores
where algorithms can consume processed data; and manage the entire change life cycle. These are services designed to
run in a cloud-native fashion. Using abstract definitions such as infrastructure as code to prepare all the necessary
scaffolding allows different teams to provision the development, testing, and production infra as their own capacity
grows.
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