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Abstract: The automobile sector across the globe has undergone a dramatic change in the last decade. It has started to 

trust something more, which initially was criticized for its inferior performance – the Electric Vehicle (EV). The battery 

is one of the most important components of an EV, and the Battery Management System (BMS) continues to be the 

bottleneck of EVs. However, accurate estimation of the State of Charge (SOC) of batteries is still challenging due to the 

non-linear characteristics of batteries. This led the scholars to propose various methods of SoC estimation. It now poses 

a challenge to establish a relationship between the accuracy and robustness of the methods, and their difficulties to 

implement. This paper publishes an exhaustive literature survey of the SoC estimation methods proposed by various 

scholars. All the more, it also provides feedback on each method, which will help to make an accurate choice of the SoC 

estimation method to be implemented. This will, in turn, help in the development of a reliable BMS. 
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I. INTRODUCTION 

 

The rise in global crude oil prices and the growing awareness of its environmental impacts have called for increased 

development in alternative energy storage systems. Battery happens to be an interesting energy storage system owing to 

its high efficiency. Battery storage system has seen a sharp rise in demand due to its wide use in battery-operated 

automobiles such as Electric Vehicle and Hybrid Electric Vehicle (HEV). Electric Vehicles are seen to be the new face 

of future transportation due to zero emissions [1].  

 

Lithium ion Batteries (LiBs) are preferred choice of power supply in EVs due to their superiority over other batteries in 

terms of high specific energy, high output power and long life cycle [2]. An effective Battery Management System (BMS) 

in place is vital to ensure safe operation of battery, improved driving range, optimized power management and enhanced 

service life [2]–[5].  

 

The BMS is responsible to acquire battery’s voltage, current and internal temperature data to estimate various states of 

the battery and protect it from over-charging and over-discharging instances. SoC of a battery, used to represent the 

remaining capacity, is an important parameter of BMS, and hence it is imperative to have accurate estimation of the SoC 

to prevent the battery from over-charge, over-discharge and potential reduction in battery life [3]. 
 

 

II. BATTERY MANAGEMENT SYSTEM 

 

A BMS is the equipment designed along with software and hardware to control battery operations at different operating 

conditions. It consists of controllers, sensors and actuators with an aim to enhance the battery life and guarantee its safety 

by accurately estimating different states of the battery.  

 

A BMS, all the more, is also capable to interrupt the battery system in case of an abnormal operation. This, it does by 

closely monitoring the charge and discharge process of the battery and controlling it. A basic function diagram of a BMS 

is shown in Fig.1. 
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Fig.1 Function Diagram of Battery Management System 

 

The control circuit of a BMS estimates the state of charge (SoC), state of health (SoH) and remaining useful life (RUL) 

of batteries with the help of advanced algorithms using measured battery current, voltage and temperature. The SoC of a 

battery can be defined as the percentage of the ratio of remaining capacity to the maximum available capacity. Over a 

period of time, a battery starts losing its capability to store energy. This deterioration of battery’s capability is indicated 

by State of Health (SoH). Remaining Useful Life (RUL) is an indication of the number of load cycles remaining before 

the battery reaches its End of Life (EoL). Continuous measurement of voltage, current and temperature of battery enables 

the estimation of aforementioned battery parameters. However, the accurate estimation of battery parameters, especially 

SoC, is still a challenging task as battery’s behaviour depends on various internal and external conditions. This is further 

aggravated by the change in battery characteristics over the period of time due to aging and charge-discharge cycles. All 

the more, the accurate estimation of SoC is hindered by limited battery models and parametric uncertainties. Many SoC 

estimation techniques proposed by researchers offer poor reliability and accuracy [4], [5]. Some researchers have, in 

detail, discussed SoC estimation methods along with the future developments and trends [6]–[8]. However, a systematic 

elaboration of the difficulties and challenges of methods is hard to find in the literature. This research paper aims to 

present a detailed review of the existing SoC estimation methods bring to the fore an ordered discussion of various SoC 

estimation metods along with their key challenges and difficulties of implementation. It also discusses the classification 

of SoC estimation techniques and possible developments likely to take place in the near future. 
 

III. METHODS OF SOC ESTIMATION 
 

The State of Charge (SoC) is a representation of battery’s available capacity and is basically used to prevent the battery 

from being overcharged or undercharged. This in turn reduces the aging effects on the battery. As a result, it has become 

an interesting area of research and many researchers have proposed various methods for SoC estimation. Since many 

researchers have proposed methods for SoC estimation which involves combination of two or more techniques, the task 

of classifying the SoC estimation methods is no simple.  
 

As individual methods have their own limitations, combining more than one technique to reduce the inaccuracies is not 

uncommon in the latest literatures. A combination of OCV technique, full charge detector and robust extended Kalman 

filter algorithm (REKF) is proposed in [9]. Despite the difficulty to classify SoC estimation methods due to combination 

of techniques, this research paper tries to make the classification referring to [10] and the work done by other researchers 

in the last decade or so. It has classified the SoC estimation methods into two main categories – Direct and Indirect 

Methods, and then it subcategories these two methods into several other techniques. Each of these methods is discussed 

along with their challenges and limitations in the following sections. 

 

1. Direct Methods 
 

Direct Method of SoC estimation relies upon measuring the physical properties of battery like current, voltage and 

temperature, and using an equation to estimate the SoC. The Direct Methods entail directly measuring or calculating SoC 

without the need for an independent model or system identification. These approaches are commonly preferred due to 

their straightforwardness and suitability for real-time applications. 

1.1 Coulomb Counting (CC) Method 

Coulomb Counting (CC) is considered as a standard method of SoC estimation [11]. Since it offers good accuracy for 

short-term estimations, CC is the most widely used method. According to CC method, SoC is defined by an equation 

given below [12] as 
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Where, SoC(t0) is the initial State of Charge of battery, and Cn and Ibat refer to the nominal capacity and 

Charging/Discharging current of battery respectively. Although CC provides a very simplistic approach, it suffers from 

the error of initial value. There are also noise errors and errors in the battery current measurement. These errors, in turn, 

lead to the accumulated errors and the CC method loses its precision and accuracy. Since this method requires the 

knowledge of initial SoC, which in practice is difficult to acquire, it will give inaccurate estimation of SoC. Hence, it is 

often used in combination with other algorithms for increasing its accuracy and precision [13]. 

 

1.2 Open Circuit Voltage (OCV) Based Estimation 

 

The Open Circuit Voltage method involves continuous measurement of the cell voltage and the corresponding SoC is 

determined from the look-up table. This method encounters the difficulty of requiring very high resolution sensors and 

ample amount of time to reach equilibrium for accurate measurement of SoC. Hence, it is practically less effective. Also, 

The OCV-SoC curve tends to shift upward as the charging current increases [14]. This behaviour of the curve informs 

that – the higher voltage limit is reached faster when the battery deals with large current, and for the same value of OCV 

battery does have different values of SoC as shown in fig.2. In addition to this, each cell has different OCV-SoC 

relationship which further deteriorates the reliability of this method. Hence, the OCV method is often used with methods 

for estimating SoC. In [15], [16], the authors have proposed a combination of discontinuous discharging method and 

Extended Kalman Observer method along with OCV-SoC look-up method to estimate the SoC of battery. 

 

 
 

Fig.2 OCV-SoC curve for charging process at different current values 

 

1.3 Impedance Measurement Based Estimation 
 

This method involves the measurement of voltage and current at different frequencies and then computing its complex 

quotient to be the cell impedance. In [17], Electrical Circuit Model (ECM) is used for battery model and its parameters 

are calculated from the measured data of impedance which is then represented in the form of a Nyquist graph. This 

measured impedance is then divided into real and imaginary parts and is plotted against one another. As the parameters 

of the model become known, the SoC of the battery can then be computed. In [18], the author proposes Electrochemical 

Impedance Spectroscopy (EIS) approach for estimation wherein the impulse signal is broken down into factors of Fourier 

series. With this signal of different frequencies, the impedance is found by spectral analysis. 

 

This estimation approach is specifically applicable under uniform charging conditions, making it unsuitable for Electric 

Vehicles (EVs) subject to inconsistent charging scenarios with varying currents. Furthermore, the method's effectiveness 

is constrained by its sensitivity to high temperatures, limiting its application to the high-frequency range. 
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2. Model-Based Estimation Methods 

 

As they overcome the logjam of the direct measurement methods, Model-based estimation have become increasingly 

common. These methods set up a battery model and employ modern algorithms for estimation of battery states using its 

measured parameters like current, voltage and temperature. This section aims at reviewing only the electrical circuit 

battery models as they form the reference for most of the other battery modelling methods. 

 

2.1 Electrical Circuit Model-Based Estimation 

 

The three widely used Electrical Circuit Models (ECMs) are illustrated in  [19]. The models are chosen owing to their 

excellent dynamic performance. The first of the models is known as Thevenin model which is a first order R-C model. 

The Thevenin model comprises of a non-linear voltage source (VOCV)  expressed as a function of SoC, battery terminal 

voltage Vt, charge or discharge current Ib, diffusion resistance (RP1), a capacitor (CP1) used to model the polarisation 

capacitance effects and an internal resistance (Rt).  The other model consists of a capacitor added in series with (VOCV). 

This model characterizes the capacity of charge stored in the battery and also describes the changes in the values of Open 

Circuit Voltage. The third model is a second order model which adds up a parallel combination of RP2 – CP2 in series 

with the first order model. The second order model is shown in Figure 3. 
 

 
 

Fig.3 Second Order Electrical Circuit Model 

 

Increasing the number of parallel RC networks proves to improve the precision of battery response estimation. In [19], 

the author has shown the second order model to be the most accurate as it has superior dynamic performance. In [20], the 

author compares the continuous and discrete time equations of second order model and draws an inference that there are 

sensitivity issues encountered in transformation of discrete parameters and hence makes the discrete time method less 

efficient. Accurately parameterizing the model for new batteries is a resource-intensive process, typically confined to 

laboratory settings. However, this approach is marked by high costs, time-consuming procedures, and often proves 

impractical for obtaining all requisite parameters. Moreover, the model falls short of providing a comprehensive 

description of the battery's electrochemical processes and lacks the capability to account for inherent inaccuracies. 
 

2.2 Electrochemical Model-Based Estimation 
 

An electrochemical model considers the internal electrochemical processes within the battery, providing a more detailed 

and accurate representation of its behaviour. It takes into account factors like electrode kinetics, ion diffusion, and 

temperature effects, allowing for a comprehensive understanding of the battery's state.  
 

Electrochemical models provide a higher level of accuracy by considering the complex electrochemical reactions 

occurring within the battery. Also, electrochemical models can account for temperature variations, offering a more robust 

SoC estimation in diverse environments. However, electrochemical models can be computationally intensive and 

accurate SoC estimation relies on precise model parameterization, which can be challenging. For an instance, an 

electrochemical model discussed in [21] comprises six non-linear partial differential equations which require numerical 

solution. 

 

3. Adaptive System-Based Estimation Methods 
 

In recent times, the progress in artificial intelligence has led to the creation of diverse adaptive systems designed for SoC 

estimation. These newly developed techniques encompass a range of methodologies, including back propagation (BP) 
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neural networks, radial basis function (RBF) neural networks, fuzzy logic approaches, support vector machines, fuzzy 

neural networks, and Kalman filters. What sets these adaptive systems apart is their intrinsic self-designing nature, 

enabling automatic adjustments in response to evolving system conditions. Given the impact of various chemical factors 

on batteries and the nonlinearity inherent in SoC, adaptive systems emerge as effective solutions for accurate SoC 

estimation. 

 

3.1 Back Propagation Neural Network-Based Estimation 

 

A Neural Network operates on a mathematical algorithmic model to handle the intricate characteristics of a complex 

neural network or parallel processing. This technology excels at processing data and discerning relationships among 

various initial complex factors. Within the realm of Neural Network algorithms, the Back Propagation (BP) Neural 

Network stands out for its ability to solve non-linear systems, featuring a simpler topology compared to conventional 

Neural Network methods [22]. The BP Neural Network structure comprises three layers: the input layer, hidden layer, 

and output layer. The input layer incorporates parameters such as battery voltage, current, resistance, and ambient 

temperature, while the number of hidden layers is contingent on the desired system accuracy. The output layer generates 

an estimated SoC value. The primary objective of this method is to minimize the error value. However, the system error 

is contingent on factors such as the quantity of training data and the methodology employed in experiments. Training 

data, crucial for SoC estimation, is typically derived from charging and discharging battery experiments. The 

effectiveness of this training method is evident in minimizing error functions. However, errors may escalate if the BP 

Neural Network lacks sufficient training information from SoC values [23]. To mitigate this, it becomes imperative to 

utilize a substantial amount of training data from diverse batteries to achieve an accurate SoC value. This is crucial 

because the discharge characteristics of batteries may vary, even if they share the same type and manufacturer, owing to 

differences in the electrolyte quantity [24]. 

 

3.2 RBF Neural Network-Based Estimation 

 

The RBF neural network proves to be an effective methodology for estimating systems with incomplete information, 

particularly adept at analysing relationships within a given set. It excels in comparing one major (reference) sequence 

with other sequences, offering valuable insights into diverse scenarios. The application of the RBF neural network 

extends to SoC estimation, as demonstrated through experimentation with battery data. Results indicate that the model's 

operational speed and estimation accuracy align with practical demands, underscoring its valuable applications [25]. 

In a study documented in [25], the SoC estimation method utilizing the RBF neural network relies on input data such as 

terminal voltage, discharging current, and battery temperature. This approach effectively estimates SoC for LiFePO4 

batteries across varying discharging conditions. The experimental data obtained closely aligns with the model's 

predictions, validating its reliability and accuracy in SoC estimation. 

 

3.3 Fuzzy Logic-Based Estimation 

 

Fuzzy Logic (FL) serves as a problem-solving methodology designed to streamline complex input data characterized by 

noise, vagueness, ambiguity, and imprecision. This method employs objective rules to discern the actual value within the 

input data. The operational principle of a Fuzzy Logic technique can be delineated into four fundamental stages [26]: 

 

a) Fuzzification: During this initial stage, the measured values of the system undergo a transformation into linguistic 

fuzzy sets. These sets are then categorized into membership functions, each indicating the degree of belonging to a 

specific logical set. 

b) Fuzzy Rule Base: The development of a fuzzy rule base constitutes the second stage, drawing on professional 

expertise and insights into the system's operational methods. This rule base serves as a foundation for guiding the 

fuzzy logic process. 

c) Inference Engine: In the inference engine stage, all fuzzy rules are systematically converted into fuzzy linguistic 

outputs. This transformation is pivotal in deriving meaningful insights from the input data based on the established 

fuzzy rule base. 

d) Defuzzification: The final stage involves translating the linguistic fuzzy rules into analog output values. 

Defuzzification is the process through which the abstract and linguistic outcomes are transformed into concrete and 

quantifiable results. 
 

By navigating through these four stages, Fuzzy Logic methodologies provide a structured approach to handling complex 

input data, extracting valuable insights, and generating meaningful output values. Fuzzy Logic (FL) systems possess the 

capability to make generalizations about any system through cycle number estimation.  
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This is particularly advantageous in battery tests where describing the battery's state as either "High" or "Low" may be 

more straightforward than obtaining a precise numerical value. 

 

However, the computational expense associated with this method is substantial. Due to the requisite for a distinct and 

consistent battery characteristic rule, coupled with the substantial variation in battery parameters throughout the lifetime 

of Lithium-ion Batteries (LiBs), the accuracy of SoC estimation may be compromised. Specifically, if the proposed SoC 

estimation relies on static battery characteristics, this approach becomes practically unfeasible for LiBs employed in 

Electric Vehicles (EVs). Notably, the aging of the battery is not taken into consideration, further limiting the applicability 

of this method. 

 

3.4 Support Vector Machines-Based Estimation 

 

The Support Vector Machine (SVM) has found widespread application in pattern recognition, excelling particularly in 

classification across various domains. Interestingly, the SVM has also proven effective in addressing regression 

problems, a task inherently more challenging than classification. When employed as a nonlinear estimation system, the 

SVM exhibits greater robustness compared to a least-squares estimation system, showcasing insensitivity to minor 

changes [27]. 

 

In a study by Hansen and Wang [27], the application of SVM for estimating the SoC in lithium-ion batteries was 

investigated. The SVM-based estimator not only overcomes the limitations associated with the Coulomb counting SoC 

estimator but also delivers accurate SoC estimates, presenting a promising advancement in battery management 

technology. 

 

3.5 Kalman Filter-Based Estimation 

 

Utilizing real-time road data for the estimation of Battery SOC poses inherent challenges due to potential difficulties and 

costs associated with measurement. However, in a study outlined in [28], the application of the Kalman filter method is 

demonstrated to offer reliable SoC estimations through real-time state estimation. Kalman Filtering is a powerful and 

widely used technique for estimating the SoC of a battery. It combines mathematical modeling with real-time 

measurements to provide accurate and dynamic SoC estimates.  

 

The two primary variations of Kalman Filtering used for SoC estimation are the Extended Kalman Filter (EKF) and the 

Unscented Kalman Filter (UKF). Overview of the Kalman Filtering technique for SoC estimation is as below: 

 

a) Battery Model: Kalman Filtering relies on a mathematical model of the battery's behavior. This model can be a 

simple equivalent circuit model or a more complex physics-based model, depending on the accuracy desired. 

b) State Variables: The SoC is considered a state variable in the Kalman Filter, which is continually estimated and 

updated. Other state variables might include the battery's internal resistance, capacity, or voltage. 

c) System Dynamics: The battery model is used to describe how the SoC and other state variables change over time in 

response to factors like charging, discharging, temperature, and aging. These dynamics are typically described by a 

set of differential equations. 

d) Measurement Model: The Kalman Filter combines the battery model with real-time measurements, such as voltage 

and current, to estimate the state variables. The relationship between the state variables and the measurements is 

described by a measurement model. 

e) Prediction Step (Time Update): In the prediction step, the Kalman Filter uses the battery model and the system 

dynamics to predict how the state variables (including SoC) will change over a short time interval (a time step). This 

prediction includes an estimate of the SoC. 

f) Update Step (Measurement Update): In the update step, the Kalman Filter compares the predicted state variables, 

including the predicted SoC, with the actual measurements taken from the battery (voltage and current). The filter 

calculates a correction factor that minimizes the difference between the predicted and measured values, and this 

correction is used to update the state variables, including SoC. 

 

Iterative Process: The Kalman Filter iteratively performs the prediction and update steps at a high frequency, continually 

refining the SoC estimate based on new measurements. 

 

Yatsui and Bai [29] introduced a SoC estimation method for lithium-ion batteries based on the Kalman filter. Through 

experimental validation, the effectiveness of the Kalman filter in online applications was substantiated.  
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Barbarisi et al. [30] proposed an extended Kalman filter (EKF) for estimating concentrations of key chemical species 

averaged across the thickness of the active material. This approach utilizes terminal current and voltage measurements 

to derive the SoC of the battery. 

 
In the realm of SoC estimation, an innovative method is presented in [31] based on the unscented Kalman filter (UKF) 

theory and a comprehensive battery model. Results indicate the superiority of the UKF method over the extended Kalman 

filter method in accurately estimating SoC for batteries. Sun et al. [32] further contribute to this field by introducing an 

adaptive UKF method for estimating SoC in lithium-ion batteries used in electric vehicles. The adaptive adjustment of 

noise covariance during the SoC estimation process is implemented through the concept of covariance matching within 

the UKF framework.  

 
The Kalman Filter based algorithms encounter challenges associated with heightened complexity, elevated computational 

costs, and instability. The method incorporates intricate matrix operations, potentially leading to numerical instabilities 

and complicating the implementation of the algorithm on standard, cost-effective microcontrollers. Kalman Filter (KF) 

methods exhibit a strong dependence on battery models and sensor precision, accompanied by limitations such as 

accuracy in linearization and the stability of filters derived from Jacobian matrices.The efficacy of KF variants hinges on 

prior knowledge of the model and the covariance of measurement noise. Any inaccuracies in system modeling and noise 

covariance may detrimentally impact filter performance, resulting in sub-optimal convergence or sluggish adaptation. 

KF performance is notably compromised in the presence of substantial uncertainties regarding model structure, physical 

parameters, noise levels, and initial conditions. 

 

3.6 Fuzzy Neural Network-Based Estimation 

 

The Fuzzy Neural Network (FNN) has found extensive applications, particularly in identifying unknown systems. In the 

realm of nonlinear system identification, the FNN demonstrates effectiveness by adeptly fitting nonlinear systems 

through the calculation of optimized coefficients within its learning mechanism. 

 
In the field of SoC estimation, two prominent types of fuzzy-based neural networks frequently appear in the literature: 

the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the Local Linear Model Tree [12]. These models primarily 

employ direct open-loop SoC estimation. ANFIS, specifically, combines the strengths of fuzzy systems and adaptive 

networks within a unified intelligent paradigm. By integrating the flexibility and subjectivity of fuzzy inference systems 

with the optimization prowess and learning capabilities of adaptive networks, ANFIS excels in modeling, approximation, 

nonlinear mapping, and pattern recognition. Its applications include modeling cell characteristics, online correction of 

other SoC estimation techniques for enhanced accuracy, and direct retrieval of the estimated SoC value [33], [34]. 

 
However, implementing direct open-loop SoC estimation introduces inaccuracies into the process. The approach 

demands a substantial volume of training data and involves extensive computations. Given the inherent open-loop nature 

of this method, adapting to the aging state of the battery becomes unfeasible. Moreover, the considerable volume of 

training data required significantly restricts its widespread applicability. 

 

IV. CONCLUSION 
 

This paper provides a critical examination of the State of Charge (SoC) estimation methodologies presented by scholars 

in the recent past, elucidating the core principles and principal limitations of each approach. Only methodologies 

extensively employed in recent years are discussed, excluding those less prevalent. Through this review, it becomes 

evident that the most challenging aspect of achieving accurate battery SoC estimation lies in constructing a model that 

authentically represents the internal dynamics of the battery, encompassing temperature dependencies on internal 

resistance and capacity degradation. It is also observed that the precision of SoC estimation can be influenced by several 

factors, including modeling imperfections, uncertainties in parameters, inaccuracies in sensors, and measurement noise. 

Additional factors impacting battery performance, and consequently the estimation methods, involve self-discharging, 

aging effects, cell imbalances, capacity fade, and temperature influences. Regardless of the methodology employed, there 

is an inherent trade-off in battery modeling, necessitating a balance between accuracy and computational complexity. 

 

The literature underscores that the aging of Lithium-ion Batteries (LiBs) is influenced by various parameters, including 

temperature, time, SoC, cycle number, charge rate, and depth of discharge. The inclusion or exclusion of these parameters 

in battery models significantly affects the accuracy of SoC estimation. Notably, SoC estimation techniques that 

continuously update model parameters can effectively address the aging phenomenon. 
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In the context of real-time EV applications, it is essential to develop a model that strikes a balance between simplicity 

and accurate SoC estimation. The Electrical Circuit Model (ECM) stands out as particularly suitable for online estimation. 

In this model, adaptive filter-based and artificial intelligence-based approaches are employed to achieve highly precise 

SoC estimations. However, a notable drawback of the ECM is its lack of a detailed physical-chemical explanation for 

microscopic movements within the battery. Conversely, the electrochemical model, while having the potential to illustrate 

charge transfer and unveil electrochemical mechanisms, is deemed overly complex for online calculations. Through the 

review, it becomes evident that adaptive filter-based algorithms prove more fitting for EV applications. In contrast, 

approaches based on artificial intelligence are considered less suitable due to their demanding computational 

requirements and/or offline learning processes. In addressing optimization challenges within filter-based techniques, 

there is a growing trend towards employing artificial intelligence-based optimization techniques. This shift is motivated 

by the simplicity, flexibility, derivation-free mechanism and effectiveness. 

 

Establishing an accurate SoC estimation algorithm relies fundamentally on the battery modeling process. However, 

existing battery modeling methods, as proposed in the literature, exhibit limitations in terms of accuracy, especially under 

specific conditions. Additionally, these methods often impose restrictions on assessing aging, hindering continuous model 

updates. Consequently, there is a pressing need for further research in this field. To enhance the accuracy and practicality 

of battery modeling, there is a call for exploring practical battery construction and integrating adaptive control 

technology, expert system theories, and artificial intelligence into the modeling process. It is crucial to acknowledge that 

none of the reviewed methods emerges as entirely efficient and reliable. While a method may be comprehensive and 

accurate for a specific application and set of conditions, it might fall short of accuracy in different scenarios. Given these 

considerations, the selection of an appropriate algorithm ultimately rests with the designer, contingent upon their 

understanding of the specific application. The information provided in this paper shall serve as a valuable resource to aid 

designers in choosing the most suitable approach for their particular context. 

. 
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