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Abstract: Precise power system dynamics estimation is essential for improving power system operation, analysis and
control. Knowledge of power system dynamics is becoming more important as inverter-based energy sources get more
integrated. Therefore, it is necessary to control a power system to evaluate the state variables of a network, but considering
the economic confines simultaneous measurement of almost all electrical variables it's impossible. As a result, rather of
measuring all of the states using sensors, it is preferable to estimate states. Extended kalman filter (EKF) and Unscented
kalman filter (UKF) are used in this work to estimate the dynamic states of the power system (viz. rotor speed and rotor
angle). Using WECC 3-machine 9-bus and IEEE 5-machine 14-bus test system, the approaches are validated. EKF and
UKF are executed in MATLAB for comparative analysis. A load flow study is carried out initially on the WSCC 9-bus
system, and a set of data from the load flow output is used as a measurement input in algorithms. Simulation results are
show that the UKF and EKF can accurately estimate the power system dynamics
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I INTRODUCTION

Power system state estimation is an important tool of energy management system (EMS). Power system is observed by
supervisory control system. These supervisory control systems also keep track of real-time system data. The goal of
information collection is to ensure the safety of power system control and operation. However, due to measurement
inaccuracies, communication noise, telemetry failures, and other factors, the information provided by the Supervisory
Control and Data Acquisition (SCADA) system may not always be accurate. Although required quantities are not always
readily available by measuring unit, power system control and operation requires information from the complete system.
effective control and operation of power systems needs information from entire system. Power system state estimate deal
with raw measurements and available data sets to find an approximated value of the required states.

Power system is dynamic in nature, because it changes very slowly with time and continuously. If the load on the system
varies, the generations must adjust as well to overcome changes. Change in generation result the change in power flows
and injections at the buses, thus nature of the power system changes from static to dynamic. Furthermore, the power
system is becoming more dynamic as renewable energy resources, loads, and micro-grids become increasing. Controlling
and monitoring the power system is very important since it is becoming the most complex system due to the integration
of many renewable energy resources.

Static State Estimation (SSE), Tracking State Estimation (TSE), and Dynamic State Estimation (DSE) are the three types
of state estimation methodologies. These dynamic behaviors of the power system are difficult to overcome by the SSE.
This led to the development of an algorithm called DSE.

In the case of SSE, we only consider one measurement set at a time and estimate the matching state. Even when the
estimation accuracy is within acceptable levels, SSE cannot forecast the future states of the system. Where, TSE estimates
begin with the most recent estimated state, allowing for rapid state estimation. However, in both SSE and TSE, state
estimates are computed using a single set of data and a single estimation step. DSE complete the estimation in two-step,
so that DSE approach has a various advantages. The expected states are calculated in the first stage, which is known as
the prediction step. The actual states of the system are computed in the next phase, which is known as the Correction step,
using the calculated predicted states and the acquired measurement results. Because of the extra step in the DSE power
system, the operator has more time to make control decisions in an emergency. For the estimating process, DSE considers
both the measurement set and the projected state variables. The basic problem with DSE is that any quick changes in load
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or generation produce a significant transition in the state variables. The state variables of the generator, such as rotor
angle and speed, are affected by changes in active and reactive power.

The majority of monitoring and control systems used in control centers are based on static state estimates, which may not
good enough to capturing such a changes. As a result, a highly accurate estimator that can track dynamic changes in
nonlinear power systems on a continuous basis is required. The most often used Kalman filter algorithms for DSE are the
Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). Because power system equations (such as the swing
equation and the power flow equation) are nonlinear, Kalman filters were used on the WSCC-9 and IEEE-14 buses. The
rotor speed and angle of a generator were calculated using EKF and UKF in this study.

1. EKF & UKF ALGORITHMS

Dynamic State Estimation Algorithms

The dynamic state estimation (DSE) algorithms determine by the system's dynamic states, which are state variables in the
nonlinear algebraic equations that define the power system. The identification of mathematical modelling for the
reliability of the power system is the first stage in the DSE process. DSE forecasts the dynamic state vector one step ahead
of time using the system's mathematical model and the acquired measurement data. A set of nonlinear differential

equations can be used to model a dynamic system.
dx 2H dw

E=f(x,u,w); M—SE=TM—P3—D((U—(US)+U
The state variables are represented by the x vector, the algebraic variables are represented by the u vector, and process
(system) noise is represented by the w vector. The difference form of Eq.
X = X1+ fOop, U, Wi AL
= gOk—1) Upe—1, W—1)

Where, k — 1 is the present instant of time index, k is the next instant of time index and At is the time step. The
measurements at time step k can be represented as a vector of non-linear functions 4(.). this is also called as measurement
model of the power system dynamic state estimation.

z = h(xy, vy)

The resulting error between the measured and calculated values is given by
€ =z — h(xp, vi)

As all dynamic variables (rotor speed and rotor angle) in power systems cannot be measured directly, they must be
computed and estimated. This challenge can be solved by using Kalman Filter techniques in power system dynamic state
estimation. The state variables in non-linear differential equations can be estimated using the EKF and UKF techniques.
In the next sections, the EKF and UKF algorithms are presented.

. EKF Algorithm

The EKF is a nonlinear Kalman Filter that linearizes around a current mean and error covariance estimate.

The Extended kalman filter (UKF) can be summarized as follows:

1. The discrete time system equations of a non-linear system can be represented as
Xer1 = Jfie(e we, wie)
Vi =)
wi  ~(0,Q)
v~ (0,Ry)
Q. indicates the system noise and R, indicates the measurement of noise covariance
2. The initial state covariance matrix is initialised by taking the second moment of the system state about the first

estimate, and the initial state of EKF is initialised by taking the expectation of the initial state of the system.
It can be stated mathematically as follows.

X5 = E(xp)

P0+ =E[(x) — fg)(xo - JAC(T)T]

The state and error covariance matrix are predicted as follows for each time step k.

3. Partial derivative matrices of the current state estimate x,;_,are obtained as follows.
_ Ok
F, =—
ox i,
)
L =Y
ow ’21-:—1
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4. The time update of state estimate and estimation-error covariance matrix is done using:
Pk_ = FkP+k - 1F,z‘ + LkaLk
£ = fi(e-1, w1, 0)

The state and error covariance matrix correction is done as follows for each time step k.

5. Partial derivative matrices for correction are calculated as:
. dhy
k - ax Lo
ohy,
Ve =—
k v R
6. The state estimate and estimation error covariance are measured and updated as follows:

Ky = P H{ (H, P¢ H, + ViR V)™
Ry = % + Kilzi — e (R, 0)]
= (1 - Kka)Pk_

. UKF Algorithm
The sigma-points computation, state prediction, and state correction are the three primary aspects of the UKF algorithm.
The Unscented Kalman Filter (UKF) can be summarized as follows:

1. The discrete time system equations are presented as follows:

X = freo1 (Cpem1, Upem1, Wie—1)

Vi o =h(Ooovr)

wi  ~(0,Q)

v~ (0,Ry)
Q. indicates the system noise and R, indicates the measurement of noise covariance
2. Initialize the filter:

72(_; = E(xo)

P = E[(x = %) (x = £0)"]

Where, £ represents the initial state and P, represents the initial state covariance matrix. The subscript + indicates the
estimate is in an a posteriori estimate.

3. The state estimate and covariance are propagated from one measurement time to the next using the following
time update equations.

(a) Firstly, to propagate from time step k — 1 to k, the sigma points £ _, are specified according to the following formula:

5&’((1_)1 — xA'l-:—l + X-(i)’ i= 1, ...,27’1

T
( (n+/1)Pk+_1) ,i=1,..,n
i
T
gD = _< /(n+l)P,§’_|) ,i=1,...,n
i

(b) Use the known nonlinear system equation f(.) to transform the sigma points into £ A() vectors as shown in Eq. with
proper changes as our nonlinear transformation is f(.) rather than 4(.) :

20
52 = 50 57 = F(52, w0 t)

P10

(c) Combine the % A(‘) vectors to obtain the a priori state estimate at time k which is given by the following formula:
2n

1 .
=g )

i=1

(d) Estimate the a priori error covariance by adding Q,_, to the end of the equation in order to take the process noise into
account:

Z (x(l) xk)(x(l) - fCE)T + Qx—1
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4. The time update equations are now complete, and the measurement update equations must be implemented in
the UKF algorithm's final section.

(a) Choose sigma points “(L) with proper changes since the current best assumption for the mean and covariance of x;,
are X and Py :

20 =g+ %0, i=1,...2n
O =(Jn+ A)P,;)iT, i
D = —(J(n+ A)P,;)l,T, i

(b) Using the known nonlinear measurement equation %(.) to transform the sigma points into 3“/,5‘) vectors as follow:

he)
50020 5O = (2D 1

(c) Combine the y, A(l) vectors to obtain the predicted measurement at time:

z NG
e = 2n

(d) Add R, to the end of the equation to account for measurement noise and estimate the covariance of the projected
measurement

o () s _ o \"
By = Z( Y= 9) (@ = 9k) + R
(e) Estimate the cross covariance between %, and yk
® s _ o \"
Py=5 Z(xl—x)( O = 9)

(f) Finally, the normal Kalman filter formulae can be used to update the state estimate's measurement:

Ki = P, P!

Xg = & + Ke (e — )

¢ =P — (KkPKY)
Where, K, represents the Kalman gain matrix, £ represents the state estimate and P represents the estimation error
covariance matrix.

1. MATHEMATICAL FORMULATION

The data from the WSCC-9 and IEEE-14 buses is converted to a common base, which is typically 100 MVA. Electrical,
mechanical and damping power are all expressed in per unit.

The Real and Reactive power of the load, P.i and Qui, will be obtained by executing load flow. If a load bus has a voltage
solution V;; and complex power demand S;; = P;; + jQ.;, then

I _ Sui _ Pui—jQu

Vi IVl? [Vyil?

Vi =

The internal voltages of the generators |E;|28; ° are derived from the power flow data using the pre-disturbance terminal
voltages |V,;|2p; °.
|Ei126; = Vil + jxail;

, Sei xai(Pgi — JQc:)
XdioGi LA\ Gl Gi
E;|26; Vil +j = V| +j 2=
| ll l | azl |Va1| | all ] |Val|
QciXai Peixa;
( “ |Vai| J |Vai|
also
6? = 61: + B

Where, angle difference between internal and terminal voltage is &;.
Actual terminal voltage angle is §3;
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Initial generator angle &
The Y, matrices for the prefault, faulted and postfault network conditions are calculated. Y;,,; Further reduce by kron
equation. (Here we assumed generated Emf as node)

I, = (Ynn - YnsYsglysn)En = 1?En

Where, Y is the desired reduced admittance matrix; Y,,, is diagonal matrix of inverted generator impedances; Y, is created
based on generator and bus connection,
-1

Yosm = {jxdn
0 otherwise.

ifm=G,andk=n

Y,s = transpose of Y,,,; Y;,,, = System bus admittance matrix (WSCC-9 BUS & IEEE-14) ;

Real power delivered to the network by i machine is given as

n
Pa = |B2|[9u] cos@) + ) IE|E][%] cos(s: - 5 - 0y))
o
i=12..,n

To analyses the rotor behavior we can use swing equation. Generator rotor speeds and angles can be derived using swing
equation,

dw dasé
ME_PM_Pe_Pdi E_w_ws

Where, P, is measured or calculated using Real power eq"

n A
dw; A By;sin(8; — 6;)
M,—=P -—E?G--—z EIE|| ) =Py
a4 Il ]|[+Gijcos(5i—5j) @
Jj#i
i _
dt = w;, L= 1,2 , n.

Where, G;; = |¥;;|cos (6;) is the short-circuit conductance;
By; = |¥;;|sin (8;;) is the transfer susceptance;
Gij = |¥ij|cos (8;;) is the transfer conductance.

By implementing all this equation into EKF and UKF algorithm we can find estimated speed.

V. SIMULATION AND RESULTS

Extended kalman filter (EKF) and Unscented kalman filter (UKF) are used in this work to estimate the dynamic states of
the power system (viz. rotor speed and rotor angle). Using WECC 3-machine 9-bus and IEEE 5-machine 14-bus test
system, the approaches are validated. EKF and UKF are executed in MATLAB for comparative analysis. A load flow
study is carried out initially on the WSCC 9-bus system, and a set of data from the load flow output is used as a
measurement input in algorithms. Simulation results are show that the UKF and EKF can accurately estimate the power
system dynamics.
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Fig 4.1- Loadflow of WSCC-9 bus system

4 Load Rlow Analyzer = B K
Mode! Units Heip
Nodel: MATLAE_FS#A_WSCCQ_E-US_&:‘;!i \Updaie The load fiow converged! The izbie shaws the load fiow solubian. Cick Apply 1o update the model witn ihis solufion [Compf’.e Appryf 1Add bus iocks | Report

Block name Blocktype  Bustype BusiD Vbase (Kv)  Vref (pu) Vangle (deg) P (MW} Q (Mvar) Qmin (Mvar| Qmax (Mvar} V_LF{pu) Vangle_LF {deg) P_LF(MW) Q_LF(MVA)

192 MVA 18 kY Vsi 2 EUS 2 18.0000 10250 0 163.0000 ] 990000 £9.0000 16250 94287 183.000 14,6655
Load Flow Sus1 Bus - EUS 7 230.0000 10000 0 0 0 0 g 10210 3345 0 0

0 RLC lead FQ EUS 8 2300000 1.0000 ] 100.0000 350000 -Inf Inf 10058 05219 109.0009 35,0000
1250 RLC load RQ BUS 5 230.0000 10000 @ 1250000 50,0000 -Inf Inf 19916 35629 1250000 50000
128MVA 1355 Vs B BUS 3 13.5000 10000 [ 83.0000 0 -93.0000 %0000 10000 50228 35,000 231889
YOMAINMAR  RLCload FQ EUS 5 230.0000 0 90.0000 300000 -Inf Inf 10060 -3.5604 9000 33,0000
Lozd Flow Bus§ Buz - EUS 8 230.0000 0 0 0 0 0 10148 2283 2 ]
Load Flow Sus? Bus - EUS 4 230.0000 ] 0 0 0 ¢ 10216 d 0
4T5AIVA 165KV Ver sying EUS 1 16,5000 1.0400 0 0 0 -Inf Inf 10400 9 214 3883

Fig 4.2- Loadflow Results of WSCC-9 bus system

Simulation Results of WSCC-9 bus Using EKF & UKF
We simulated WSCC-9 bus system when fault near bus 5 is occurs at 2s and stay in system for 0.12s. To remove the fault
line 5-7 is removed at 2.12s. MATLAB results are presented in next table.

Without Transient : WOTR | With Transient : WITR

5.2.1 Simulation using EKF (WOTR + WITR ) 5.2.2 Simulation using UKF ( WOTR + WITR)
Estimation of u, by EKF Estimation of w, by UKF
Fig 4.3- Rotor speed of Gen-1 WOTR using EKF Fig 4.4- Rotor speed of Gen-1 WOTR using UKF
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Estimation of u, by EKF

Fig 4.5- Rotor speed of Gen 1 WITR using EKF

Estimatian of .., by EKF

Fig 4.7- Rotor speed of Gen 2 WOTR using EKF

Extinuniion of L, by EXE

L/
i

Fig 4.9- Rotor speed of Gen 2 WITR using EKF

Estimatian of .., by EKF

time (s}

Fig 4.11- Rotor speed of Gen 3 WOTR using EKF

Estimatian of .., by EKF

Estimation of 4, _ by EKF

Fig 4.13- Rotor speed of Gen 3 WITR using EKF

Fig 4.27- Relative Rotor angle of Gen 2-1 WOTR using
EKF
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Estimation of .., by UKF

Fig 4.6- Rotor speed of Gen 1 WITR using UKF

Estimatian of .., by UKF

Fig 4.8- Rotor speed of Gen 2 WOTR using UKF

Estimation of ., by UKF

Fig 4.10- Rotor speed of Gen 2 WITR using UKF

Estimatian of .., by UKF

time (s}

Fig 4.12- Rotor speed of Gen 3 WOTR using UKF

Estimatian of .., by UKF

/f’“

Fig 4.14- Rotor speed of Gen 3 WITR using UKF

Estimation of 5, Iqll.fKF

Fig 4.28- Relative Rotor angle of Gen 2-1 WOTR using
UKF
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Estimation of 4, _ by EKF

me (g

Fig 4.29- Relative Rotor angle of Gen 2-1 WITR using
EKF

Estimation of 4_ _ by EKF

e

me (g

Fig 4.31- Relative Rotor angle of Gen 3-1 WOTR using
EKF

Estimation of 4, by EKF

AN

il

Fig 4.33- Relative Rotor angle of Gen 3-1 WITR using
EKF

Simulation Results of IEEE-14 bus Using EKF & UKF

Estimation of iy 4 by UKF

h'tll

Fig 4.30- Relative Rotor angle of Gen 2-1 WITR using
UKF

Estimation of §, by UKF

Fig 4.32- Relative Rotor angle of Gen 3-1 WOTR using
UKF

Estimation of &, by UKF

me s

Fig 4.34- Relative Rotor angle of Gen 3-1 WITR using
UKF

We simulated IEEE-14 bus system when fault near bus 7 is occurs at 2s and stay in system for 0.12s. MATLAB results

are presented in next table.

Without Transient : WOTR | With Transient : WITR

5.3.1 Simulation Results using EKF (WOTR + WITR)

Estimation of u, by EKF

U (5)

Fig 4.39- Rotor speed of Gen-1 WOTR using EKF

Estimation of w, by EKF

Fy —

Fig 4.41- Rotor speed 01; Gen-l WITR using EKF

© IJIREEICE

5.3.2 Simulation Results using UKF (WOTR + WITR)

Estimation of y by UKF

|‘ ||

Fig 4.40- Rotor speed of Gen 1 WOTR using UKF

Estimation of w, by UKF

Fig 4.42- Rotor speed of‘ G.‘en-l WITR using UKF
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Estimation of w, by EKF

Fig 4.43- Rotor speed of Gen 2 WOTR using EKF
Estimation of w, by EKF

3

ﬁlu \

Fig 4.45- Rotor speed of Gen-2 WITR using EKF

Estimation of u, by EKF

Fig 4.47- Rotor speed of Gen 3 WOTR using EKF

Estimation of w, by EKF

.......

Fig 4.49- Rotor speed of Gen 3 WITR using EKF
Estimation of w, by EKF
| —=]

ﬁlu \

Fig 4.51- Rotor speed of Gen-4 WOTR using EKF

Estimation of iy by EKF

Fig 4.53- Rotor speed of G'en-4 WITR using EKF

Esfimation of oy by UKF

Fig 4.44- Rotor speed of Gen 2 WOTR using UKF

Estimation of u, by UKF

“ |‘

Fig 4.46- Rotor speed of Gen 2 WITR using UKF
Estirmation of . 1byum‘

W@ om o om o® 4
e s,

Fig 4.48- Rotor speed of Gen 3 WOTR using UKF

Estimation of w, by UKF

Fig 4.50- Rotor speed of Gen 3WITR using UKF

Estimation of « b’I.IK.F

Illul

Fig 4.52- Rotor speed of Gen 4 WOTR using UKF

Estimation of u, by UKF

MM_

Fig 4.54- Rotor speed of Gen 4 WITR using UKF

This work is licensed under a Creative Commons Attribution 4.0 International License


https://ijireeice.com/

IJIREEICE

ISSN (O) 2321-2004, ISSN (P) 2321-5526

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Impact Factor 7.047 32

Vol. 10, Issue 4, April 2022

DOI: 10.17148/IJIREEICE.2022.10457

Estimation of u, by EKF

Fig 4.55- Rotor speed of Gen 5 WOTR using EKF

Estimation of . hyEH.F

|
| H
l i

Fig 4.57- Rotor speed of Gen 5 WITR using EKF

Estimation of 5, by EKF

Fig 4.79- Relative Rotor angle of Gen 2-1 WOTR using
EKF

Estimafion of KH-I by EKF

i, i rad

Fig 4.81- Relative Rotor angle of Gen 2-1 WITR using
EKF

Estimation of A;_' by EXF

lime (3)

Fig 4.83- Relative Rotor angle of Gen 3-1 WOTR using
EKF

Estimation of &, by EKF

“T

Fig 4.85- Relative Rotor angle of Gen 3-1 WITR using
EKF
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Estimation of i, by UKF

W@ om o om o® 4
firme (%)

Fig 4.56- Rotor speed of Gen-5 WOTR using UKF

Estimation of w_ by UKF

Lu\

Fig 4.58- Rotor speed of Gen-5 WITR using UKF
Es!imaﬁunur# h,UI(F

iy i rad

“ om

oy
:mb

Fig 4.80- Relative Rotor angle of Gen 2-1 WOTR using
UKF

Estimation of i, . by UKF

T
tirme {s)

Fig 4.82- Relative Rotor angle of Gen 2-1 WITR using
UKF

Estimation aof 4, , by UKF

.
A

.
T W——— )

Fig 4.84- Relative Rotor an'g'le of Gen 3-1 WOTR using
UKF

Estimation of A 4 by UKF

iy, in g

)
:mb

Fig 4.86- Relative Rotor angle of Gen 3-1 WITR using
UKF
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Estimation of 4, , by EKF

L

.l!l.'i

Fig 4.87- Relative Rotor angle of Gen 4-1 WOTR using
EKF

Estimation of 4, | by EKF

gy 10

kn.l}

Fig 4.89- Relative Rotor angle of Gen 4-1 WITR using
EKF

Estimation of .‘}_‘ by EKF

Ilu\

Fig 4.91- Relative Rotor angle of Gen 5-1 WOTR using
EKF

Estimation of 4, by EKF

|‘ |‘

Fig 4.93- Relative Rotor angle of Gen 5-1 WITR using
EKF

IEEEL4_BOI_SRK_PLU3_EKF

err et delts =

Fig 4..95- Estimation Error WOTR using EKF

Fig 4..97- Estimation Error WITR using EKF
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Estimation of 4, by UKF

gy 10

1
R e I 1

kn.l}

Fig 4.88- Relative Rotor angle of Gen 4-1 WOTR using
UKF

Estimation of 4, by UKF

kn.l}

Fig 4.90- Relative Rotor angle of Gen 4-1 WITR using
UKF

Estimation of 4 , by UKF

|‘ |‘

o L Al : = e
kn.lf

Fig 4.92- Relative Rotor angle of Gen 5-1 WOTR using
UKF

Estimation of 4 , by UKF

kn.l}

Fig 4.94- Relative Rotor angle of Gen 5-1 WITR using
UKF

) FCODE_IEFEI4 BUS_4RK PLUS URE

Fig 4..98- Estimation Error WOTR using UKF
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OVERALL WSCC-9 BU§ 'IEEE-14 BU§
Without With Without With
ERROR ) . . .
Transient | Transient | Transient | Transient
EKF 0.011 0.066 0.0011 0.0013
UKF 0.0623 0.0686 0.0066 0.0079

Table 4.1 Overall error using EKF & UKF

ERROR IN _WSCC-9 BUS_ _ IEEE-14 BU§
Without With Without With
SPEED . ] . .
Transient Transient Transient Transient
EKF 5.4899e-04 | 3.2457e-04 | 8.5319-e05 | 1.0907e-04
UKF 1.7567e-04 | 2.7429e-04 | 2.4978-e05 | 2.1053e-04

Table 4.2 error in rotor speed estimation using EKF & UKF

ERROR WSCC-9 BUS IEEE-14 BUS
IN Without With Without With
ANGLE | Transient | Transient | Transient | Transient
EKF 0.0016 0.0128 0.0022 0.0024
UKF 0.1245 0.1369 0.0133 0.0157

Table 4.3 error in rotor angle estimation using EKF & UKF
V. CONCLUSION

During the work in this project, Swing equation is used to determine the speed of rotor and rotor angle with the help of
two methods i.e., Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). The comparative analysis is also
done by using EKF and UKF for WSCC-9 bus system and IEEE-14 bus system through the simulation in MATLAB.
Lastly, the transient and steady-state conditions are observed and analyzed for WSCC-9 and IEEE-14 bus system while
using EKF and UKF.

Estimation capability and accuracy of Extended kalman filter and unscented kalman filter can be check for more Complex
system also considering the transient in the system

Further research can be done on estimated values of generator’s rotor speed. Either measured speed of generator can be
replace by estimated speed or not. Other dynamic state should be derived by using Extended kalman filter and unscented
kalman filter.
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