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Abstract: Precise power system dynamics estimation is essential for improving power system operation, analysis and 

control. Knowledge of power system dynamics is becoming more important as inverter-based energy sources get more 

integrated. Therefore, it is necessary to control a power system to evaluate the state variables of a network, but considering 

the economic confines simultaneous measurement of almost all electrical variables it's impossible. As a result, rather of 

measuring all of the states using sensors, it is preferable to estimate states. Extended kalman filter (EKF) and Unscented 

kalman filter (UKF) are used in this work to estimate the dynamic states of the power system (viz. rotor speed and rotor 

angle). Using WECC 3-machine 9-bus and IEEE 5-machine 14-bus test system, the approaches are validated. EKF and 

UKF are executed in MATLAB for comparative analysis. A load flow study is carried out initially on the WSCC 9-bus 

system, and a set of data from the load flow output is used as a measurement input in algorithms. Simulation results are 

show that the UKF and EKF can accurately estimate the power system dynamics 

 

Keywords- Power system state estimation, extended kalman filter, and unscented kalman filter, ect. 

I.  INTRODUCTION 

Power system state estimation is an important tool of energy management system (EMS). Power system is observed by 

supervisory control system. These supervisory control systems also keep track of real-time system data. The goal of 

information collection is to ensure the safety of power system control and operation. However, due to measurement 

inaccuracies, communication noise, telemetry failures, and other factors, the information provided by the Supervisory 

Control and Data Acquisition (SCADA) system may not always be accurate. Although required quantities are not always 

readily available by measuring unit, power system control and operation requires information from the complete system. 

effective control and operation of power systems needs information from entire system. Power system state estimate deal 

with raw measurements and available data sets to find an approximated value of the required states. 

Power system is dynamic in nature, because it changes very slowly with time and continuously. If the load on the system 

varies, the generations must adjust as well to overcome changes. Change in generation result the change in power flows 

and injections at the buses, thus nature of the power system changes from static to dynamic. Furthermore, the power 

system is becoming more dynamic as renewable energy resources, loads, and micro-grids become increasing. Controlling 

and monitoring the power system is very important since it is becoming the most complex system due to the integration 

of many renewable energy resources. 

Static State Estimation (SSE), Tracking State Estimation (TSE), and Dynamic State Estimation (DSE) are the three types 

of state estimation methodologies. These dynamic behaviors of the power system are difficult to overcome by the SSE. 

This led to the development of an algorithm called DSE. 

In the case of SSE, we only consider one measurement set at a time and estimate the matching state. Even when the 

estimation accuracy is within acceptable levels, SSE cannot forecast the future states of the system. Where, TSE estimates 

begin with the most recent estimated state, allowing for rapid state estimation. However, in both SSE and TSE, state 

estimates are computed using a single set of data and a single estimation step. DSE complete the estimation in two-step, 

so that DSE approach has a various advantages. The expected states are calculated in the first stage, which is known as 

the prediction step. The actual states of the system are computed in the next phase, which is known as the Correction step, 

using the calculated predicted states and the acquired measurement results. Because of the extra step in the DSE power 

system, the operator has more time to make control decisions in an emergency. For the estimating process, DSE considers 

both the measurement set and the projected state variables. The basic problem with DSE is that any quick changes in load 

https://ijireeice.com/


ISSN (O) 2321-2004, ISSN (P) 2321-5526 IJIREEICE 

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering 

Impact Factor 7.047Vol. 10, Issue 4, April 2022 

DOI:  10.17148/IJIREEICE.2022.10457 

© IJIREEICE              This work is licensed under a Creative Commons Attribution 4.0 International License                  362 

or generation produce a significant transition in the state variables. The state variables of the generator, such as rotor 

angle and speed, are affected by changes in active and reactive power.  

The majority of monitoring and control systems used in control centers are based on static state estimates, which may not 

good enough to capturing such a changes. As a result, a highly accurate estimator that can track dynamic changes in 

nonlinear power systems on a continuous basis is required. The most often used Kalman filter algorithms for DSE are the 

Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). Because power system equations (such as the swing 

equation and the power flow equation) are nonlinear, Kalman filters were used on the WSCC-9 and IEEE-14 buses. The 

rotor speed and angle of a generator were calculated using EKF and UKF in this study. 

II. EKF & UKF ALGORITHMS 

 

Dynamic State Estimation Algorithms  

The dynamic state estimation (DSE) algorithms determine by the system's dynamic states, which are state variables in the 

nonlinear algebraic equations that define the power system. The identification of mathematical modelling for the 

reliability of the power system is the first stage in the DSE process. DSE forecasts the dynamic state vector one step ahead 

of time using the system's mathematical model and the acquired measurement data. A set of nonlinear differential 

equations can be used to model a dynamic system. 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑢, 𝑤);        

2𝐻

𝜔𝑠

𝑑𝜔

𝑑𝑡
= 𝑇𝑀 − 𝑃𝑒 − 𝐷(𝜔 − 𝜔𝑠) + 𝑣 

The state variables are represented by the x vector, the algebraic variables are represented by the u vector, and process 

(system) noise is represented by the w vector. The difference form of Eq. 
𝑥𝑘  = 𝑥𝑘−1 + 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1)Δ𝑡

 = 𝑔(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1)
 

Where, 𝑘 − 1 is the present instant of time index, 𝑘 is the next instant of time index and Δ𝑡 is the time step. The 

measurements at time step 𝑘 can be represented as a vector of non-linear functions ℎ(. ). this is also called as measurement 

model of the power system dynamic state estimation. 

𝑧𝑘 = ℎ(𝑥𝑘 , 𝑣𝑘) 

The resulting error between the measured and calculated values is given by 

𝜖𝑘 = 𝑧𝑘 − ℎ(𝑥𝑘 , 𝑣𝑘) 

As all dynamic variables (rotor speed and rotor angle) in power systems cannot be measured directly, they must be 

computed and estimated. This challenge can be solved by using Kalman Filter techniques in power system dynamic state 

estimation. The state variables in non-linear differential equations can be estimated using the EKF and UKF techniques. 

In the next sections, the EKF and UKF algorithms are presented. 

• EKF Algorithm 

The EKF is a nonlinear Kalman Filter that linearizes around a current mean and error covariance estimate. 

The Extended kalman filter (UKF) can be summarized as follows: 

1. The discrete time system equations of a non-linear system can be represented as 
𝑥𝑘+1  = 𝑓𝑘(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘)

𝑦𝑘  = ℎ𝑘(𝑥𝑘 , 𝑣𝑘)

𝑤𝑘  ∼ (0, 𝑄𝑘)

𝑣𝑘  ∼ (0, 𝑅𝑘)

 

𝑄𝑘 indicates the system noise and  𝑅𝑘 indicates the measurement of noise covariance 

2. The initial state covariance matrix is initialised by taking the second moment of the system state about the first 

estimate, and the initial state of EKF is initialised by taking the expectation of the initial state of the system.  

It can be stated mathematically as follows. 

�̂�0
+ = 𝐸(𝑥0)

𝑃0
+ = 𝐸[(𝑥0 − �̂�0

+)(𝑥0 − �̂�0
+)𝑇]

 

The state and error covariance matrix are predicted as follows for each time step k. 

3. Partial derivative matrices of the current state estimate �̂�𝑘−1
+ are obtained as follows. 

𝐹𝑘 =
∂𝑓𝑘

∂𝑥
|

�̂�𝑘−1
+

𝐿𝑘 =
∂𝑓𝑘

∂𝑤
|

�̂�𝑘−1
+
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4. The time update of state estimate and estimation-error covariance matrix is done using: 

𝑃𝑘
− = 𝐹𝑘𝑃+𝑘 − 1𝐹𝑘

𝑇 + 𝐿𝑘𝑄𝑘𝐿𝑘

�̂�𝑘
− = 𝑓𝑘(�̂�𝑘−1

+ , 𝑢𝑘−1, 0)
 

The state and error covariance matrix correction is done as follows for each time step k. 

5.  Partial derivative matrices for correction are calculated as: 

𝐻𝑘  =
∂ℎ𝑘

∂𝑥
|

�̂�𝑘
−

𝑉𝑘  =
∂ℎ𝑘

∂𝑣
|

�̂�𝑘
−

 

6. The state estimate and estimation error covariance are measured and updated as follows: 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑉𝑘𝑅𝑘𝑉𝑘
𝑇)−1

�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘[𝑧𝑘 − ℎ𝑘(�̂�𝑘
−, 0)]

𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘

−

 

 

• UKF Algorithm 

The sigma-points computation, state prediction, and state correction are the three primary aspects of the UKF algorithm. 

The Unscented Kalman Filter (UKF) can be summarized as follows: 

1. The discrete time system equations are presented as follows: 
𝑥𝑘  = 𝑓𝑘−1(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1)

𝑦𝑘  = ℎ𝑘(𝑥𝑘 , 𝑣𝑘)

𝑤𝑘  ∼ (0, 𝑄𝑘)

𝑣𝑘  ∼ (0, 𝑅𝑘)

 

𝑄𝑘 indicates the system noise and  𝑅𝑘 indicates the measurement of noise covariance 

2. Initialize the filter: 

�̂�0
+ = 𝐸(𝑥0)

𝑃0
+ = 𝐸[(𝑥 − �̂�0

+)(𝑥 − �̂�0
+)𝑇]

 

Where, �̂�0
+represents the initial state and 𝑃0

+represents the initial state covariance matrix. The subscript + indicates the 

estimate is in an a posteriori estimate. 

3. The state estimate and covariance are propagated from one measurement time to the next using the following 

time update equations. 

(a) Firstly, to propagate from time step 𝑘 − 1 to 𝑘, the sigma points �̂�𝑘−1
𝑖  are specified according to the following formula: 

�̂�𝑘−1

(𝑖)
 = �̂�𝑘−1

+ + �̃�(𝑖),  𝑖 = 1, … ,2𝑛

�̃�(𝑖)  = (√(𝑛 + 𝜆)𝑃𝑘−1
+ )

𝑖

𝑇

,  𝑖 = 1, … , 𝑛

�̃�(𝑛+𝑖)  = − (√(𝑛 + 𝜆)𝑃𝑘−1
+ )

𝑖

𝑇

,  𝑖 = 1, … , 𝑛

 

(b) Use the known nonlinear system equation 𝑓(. ) to transform the sigma points into �̂�𝑘
(𝑖)

 vectors as shown in Eq. with 

proper changes as our nonlinear transformation is 𝑓(. ) rather than ℎ(. ) : 

�̂�𝑘−1

(𝑖)
⟶
𝑓(⋅)

�̂�𝑘
(𝑖)

,  �̂�𝑘
(𝑖)

= 𝑓(�̂�𝑘−1

(𝑖)
, 𝑢𝑘, 𝑡𝑘) 

(c) Combine the �̂�𝑘
(𝑖)

 vectors to obtain the a priori state estimate at time 𝑘 which is given by the following formula: 

�̂�𝑘
− =

1

2𝑛
∑  

2𝑛

𝑖=1

�̂�𝑘
(𝑖)

 

(d) Estimate the a priori error covariance by adding 𝑄𝑘−1 to the end of the equation in order to take the process noise into 

account: 

𝑃𝑘
− =

1

2𝑛
∑  

2𝑛

𝑖=1

(�̂�𝑘
(𝑖)

− �̂�𝑘
−)(�̂�𝑘

(𝑖)
− �̂�𝑘

−)
𝑇

+ 𝑄𝑘−1 
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4. The time update equations are now complete, and the measurement update equations must be implemented in 

the UKF algorithm's final section.  

(a) Choose sigma points �̂�𝑘
(𝑖)

 with proper changes since the current best assumption for the mean and covariance of 𝑥𝑘 

are �̂�𝑘
−and 𝑃𝑘

−: 

�̂�𝑘
(𝑖)

 = �̂�𝑘
− + �̃�(𝑖),  𝑖 = 1, … ,2𝑛

�̃�(𝑖)  = (√(𝑛 + 𝜆)𝑃𝑘
−)

𝑖

𝑇
,  𝑖 = 1, … , 𝑛

�̃�(𝑛+𝑖)  = −(√(𝑛 + 𝜆)𝑃𝑘
−)

𝑖

𝑇
,  𝑖 = 1, … , 𝑛

 

(b) Using the known nonlinear measurement equation ℎ(. ) to transform the sigma points into �̂�𝑘
(𝑖)

 vectors as follow: 

�̂�𝑘
(𝑖)

⟶
ℎ(⋅)

�̂�𝑘
(𝑖)

,  �̂�𝑘
(𝑖)

= ℎ(�̂�𝑘
(𝑖)

, 𝑡𝑘) 

(c) Combine the �̂�𝑘
(𝑖)

 vectors to obtain the predicted measurement at time: 

�̂�𝑘 =
1

2𝑛
∑  

2𝑛

𝑖=1

�̂�𝑘
(𝑖)

 

(d) Add 𝑅𝑘 to the end of the equation to account for measurement noise and estimate the covariance of the projected 

measurement 

𝑃𝑦
− =

1

2𝑛
∑  

2𝑛

𝑖=1

(�̂�𝑘
(𝑖)

− �̂�𝑘)(�̂�𝑘
(𝑖)

− �̂�𝑘)
𝑇

+ 𝑅𝑘 

(e) Estimate the cross covariance between �̂�𝑘
− and �̂�𝑘 : 

𝑃𝑥𝑦
− =

1

2𝑛
∑  

2𝑛

𝑖=1

(�̂�𝑘
(𝑖)

− �̂�𝑘
−)(�̂�𝑘

(𝑖)
− �̂�𝑘)

𝑇
 

(f) Finally, the normal Kalman filter formulae can be used to update the state estimate's measurement: 

𝐾𝑘 = 𝑃𝑥𝑦𝑃𝑦
−1

�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘(𝑦𝑘 − �̂�𝑘)

𝑃𝑘
+ = 𝑃𝑘

− − (𝐾𝑘𝑃𝑦𝐾𝑘
𝑇)

 

Where, 𝐾𝑘 represents the Kalman gain matrix, �̂�𝑘
+ represents the state estimate and 𝑃𝑘

+ represents the estimation error 

covariance matrix. 

III. MATHEMATICAL FORMULATION 

The data from the WSCC-9 and IEEE-14 buses is converted to a common base, which is typically 100 MVA.   Electrical, 

mechanical and damping power are all expressed in per unit. 

The Real and Reactive power of the load, PLi and QLi, will be obtained by executing load flow. If a load bus has a voltage 

solution 𝑉𝐿𝑖 and complex power demand 𝑆𝐿𝑖 = 𝑃𝐿𝑖 + 𝑗𝑄𝐿𝑖 , then  

𝑦𝐿𝑖 =
𝐼𝐿𝑖

𝑉𝐿𝑖

=
𝑆𝐿𝑖

∗

|𝑉𝐿𝑖|2
=

𝑃𝐿𝑖 − 𝑗𝑄𝐿𝑖

|𝑉𝐿𝑖|
2

 

The internal voltages of the generators |𝐸𝑖|∠𝛿𝑖 
0 are derived from the power flow data using the pre-disturbance terminal 

voltages |𝑉𝑎𝑖|∠𝛽𝑖  
0. 

|𝐸𝑖|∠𝛿𝑖
′ = |𝑉𝑎𝑖| + 𝑗𝑥𝑑𝑖𝐼𝑖  

|𝐸𝑖|∠𝛿𝑖 
′  = |𝑉𝑎𝑖| + 𝑗

𝑥𝑑𝑖𝑆𝐺𝑖
∗

|𝑉𝑎𝑖|
= |𝑉𝑎𝑖| + 𝑗

𝑥𝑑𝑖(𝑃𝐺𝑖 − 𝑗𝑄𝐺𝑖)

|𝑉𝑎𝑖|

 = (|𝑉𝑎𝑖| +
𝑄𝐺𝑖𝑥𝑑𝑖

|𝑉𝑎𝑖|
) + 𝑗 (

𝑃𝐺𝑖𝑥𝑑𝑖

|𝑉𝑎𝑖|
)

 

also 

𝛿𝑖
0 = 𝛿𝑖

′ + 𝛽𝑖 . 

Where, angle difference between internal and terminal voltage is 𝛿𝑖
′. 

Actual terminal voltage angle is 𝛽𝑖 
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Initial generator angle 𝛿𝑖
0 

The 𝑌𝑏𝑢𝑠 matrices for the prefault, faulted and postfault network conditions are calculated. 𝑌𝑏𝑢𝑠 Further reduce by kron 

equation. (Here we assumed generated Emf as node) 

 

𝐼𝑛 = (𝑌𝑛𝑛 − 𝑌𝑛𝑠𝑌𝑠𝑠
−1𝑌𝑠𝑛)𝐸𝑛 = �̂�𝐸𝑛  

Where, �̂� is the desired reduced admittance matrix; 𝑌𝑛𝑛 is diagonal matrix of inverted generator impedances; 𝑌𝑛𝑠 is created 

based on generator and bus connection, 

 

𝑌𝑛𝑠𝑘𝑚 = {

−1

𝑗𝑥𝑑𝑛

 if 𝑚 = 𝐺𝑛 and 𝑘 = 𝑛

0  otherwise. 

 

𝑌𝑛𝑠 = transpose of 𝑌𝑛𝑠; 𝑌𝑛𝑛 = System bus admittance matrix (WSCC-9 BUS & IEEE-14) ; 

Real power delivered to the network by ith machine is given as 

𝑃𝐺𝑖  = |𝐸𝑖
2||�̂�𝑖𝑖| cos(𝜃𝑖𝑖) + ∑  

𝑛

𝑗=1

𝑗≠𝑖

  |𝐸𝑖||𝐸𝑗||�̂�𝑖𝑗| cos(𝛿𝑖 − 𝛿𝑗 − 𝜃𝑖𝑗)

𝑖 = 1,2, … , 𝑛

 

To analyses the rotor behavior we can use swing equation. Generator rotor speeds and angles can be derived using swing 

equation, 

𝑀
𝑑𝜔

𝑑𝑡
= 𝑃𝑀 − 𝑃𝑒 − 𝑃𝑑𝑖   

𝑑𝛿

𝑑𝑡
= 𝜔 − 𝜔𝑠 

Where, 𝑃𝑒 is measured or calculated using Real power eqn 

𝑀𝑖

𝑑𝜔𝑖

𝑑𝑡
= 𝑃𝑚𝑖 − 𝐸𝑖

2�̂�𝑖𝑖 − ∑  

𝑛

𝑗=1

𝑗≠𝑖

  |𝐸𝑖||𝐸𝑗| [
�̂�𝑖𝑗 sin(𝛿𝑖 − 𝛿𝑗)

+�̂�𝑖𝑗cos (𝛿𝑖 − 𝛿𝑗)
] − 𝑃𝑑𝑖  

𝑑𝛿𝑖

𝑑𝑡
=  𝜔𝑖 ,  𝑖 = 1,2, ⋯ , 𝑛. 

 

Where, �̂�𝑖𝑖 = |�̂�𝑖𝑖|cos (𝜃𝑖𝑖) is the short-circuit conductance;  

�̂�𝑖𝑗 = |�̂�𝑖𝑗|sin (𝜃𝑖𝑗) is the transfer susceptance; 

�̂�𝑖𝑗 = |�̂�𝑖𝑗|cos (𝜃𝑖𝑗) is the transfer conductance. 

By implementing all this equation into EKF and UKF algorithm we can find estimated speed. 

 

IV. SIMULATION AND RESULTS 

 

Extended kalman filter (EKF) and Unscented kalman filter (UKF) are used in this work to estimate the dynamic states of 

the power system (viz. rotor speed and rotor angle). Using WECC 3-machine 9-bus and IEEE 5-machine 14-bus test 

system, the approaches are validated. EKF and UKF are executed in MATLAB for comparative analysis. A load flow 

study is carried out initially on the WSCC 9-bus system, and a set of data from the load flow output is used as a 

measurement input in algorithms. Simulation results are show that the UKF and EKF can accurately estimate the power 

system dynamics. 
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Fig 4.1- Loadflow of WSCC-9 bus system 

 

 
Fig 4.2- Loadflow Results of WSCC-9 bus system 

 

Simulation Results of WSCC-9 bus Using EKF & UKF 

We simulated WSCC-9 bus system when fault near bus 5 is occurs at 2s and stay in system for 0.12s. To remove the fault 

line 5-7 is removed at 2.12s. MATLAB results are presented in next table. 

 

Without Transient : WOTR | With Transient : WITR 

5.2.1 Simulation using EKF ( WOTR + WITR ) 5.2.2 Simulation using UKF ( WOTR + WITR ) 

 
Fig 4.3- Rotor speed of Gen-1 WOTR using EKF 

 
Fig 4.4- Rotor speed of Gen-1 WOTR using UKF 
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Fig 4.5- Rotor speed of Gen-1 WITR using EKF 

 
Fig 4.6- Rotor speed of Gen-1 WITR using UKF 

 
Fig 4.7- Rotor speed of Gen-2 WOTR using EKF 

 
Fig 4.8- Rotor speed of Gen-2 WOTR using UKF 

 
Fig 4.9- Rotor speed of Gen-2 WITR using EKF 

 
Fig 4.10- Rotor speed of Gen-2 WITR using UKF 

 
Fig 4.11- Rotor speed of Gen-3 WOTR using EKF 

 
Fig 4.12- Rotor speed of Gen-3 WOTR using UKF 

 
Fig 4.13- Rotor speed of Gen-3 WITR using EKF 

 
Fig 4.14- Rotor speed of Gen-3 WITR using UKF 

 
Fig 4.27- Relative Rotor angle of Gen 2-1 WOTR using 

EKF 

 
Fig 4.28- Relative Rotor angle of Gen 2-1 WOTR using 

UKF 
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Fig 4.29- Relative Rotor angle of Gen 2-1 WITR using 

EKF 

 
Fig 4.30- Relative Rotor angle of Gen 2-1 WITR using 

UKF 

 
Fig 4.31- Relative Rotor angle of Gen 3-1 WOTR using 

EKF 

 
Fig 4.32- Relative Rotor angle of Gen 3-1 WOTR using 

UKF 

 
Fig 4.33- Relative Rotor angle of Gen 3-1 WITR using 

EKF 

 
Fig 4.34- Relative Rotor angle of Gen 3-1 WITR using 

UKF 

 

Simulation Results of IEEE-14 bus Using EKF & UKF 

We simulated IEEE-14 bus system when fault near bus 7 is occurs at 2s and stay in system for 0.12s. MATLAB results 

are presented in next table. 

 

Without Transient : WOTR | With Transient : WITR 

5.3.1 Simulation Results using EKF ( WOTR + WITR ) 5.3.2 Simulation Results  using UKF ( WOTR + WITR ) 

 
Fig 4.39- Rotor speed of Gen-1 WOTR using EKF 

 
Fig 4.40- Rotor speed of Gen-1 WOTR using UKF 

 
Fig 4.41- Rotor speed of Gen-1 WITR using EKF 

 
Fig 4.42- Rotor speed of Gen-1 WITR using UKF 
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Fig 4.43- Rotor speed of Gen-2 WOTR using EKF 

 
Fig 4.44- Rotor speed of Gen-2 WOTR using UKF 

 
Fig 4.45- Rotor speed of Gen-2 WITR using EKF 

 
Fig 4.46- Rotor speed of Gen-2 WITR using UKF 

 
Fig 4.47- Rotor speed of Gen-3 WOTR using EKF 

 
Fig 4.48- Rotor speed of Gen-3 WOTR using UKF 

 
Fig 4.49- Rotor speed of Gen-3 WITR using EKF 

 
Fig 4.50- Rotor speed of Gen-3 WITR using UKF 

 
Fig 4.51- Rotor speed of Gen-4 WOTR using EKF 

 
Fig 4.52- Rotor speed of Gen-4 WOTR using UKF 

 
Fig 4.53- Rotor speed of Gen-4 WITR using EKF 

 
Fig 4.54- Rotor speed of Gen-4 WITR using UKF 
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Fig 4.55- Rotor speed of Gen-5 WOTR using EKF 

 
Fig 4.56- Rotor speed of Gen-5 WOTR using UKF 

 
Fig 4.57- Rotor speed of Gen-5 WITR using EKF 

 
Fig 4.58- Rotor speed of Gen-5 WITR using UKF 

 
Fig 4.79- Relative Rotor angle of Gen 2-1 WOTR using 

EKF 

 
Fig 4.80- Relative Rotor angle of Gen 2-1 WOTR using 

UKF 

 
Fig 4.81- Relative Rotor angle of Gen 2-1 WITR using 

EKF 

 
Fig 4.82- Relative Rotor angle of Gen 2-1 WITR using 

UKF 

 
Fig 4.83- Relative Rotor angle of Gen 3-1 WOTR using 

EKF 

 
Fig 4.84- Relative Rotor angle of Gen 3-1 WOTR using 

UKF 

 
Fig 4.85- Relative Rotor angle of Gen 3-1 WITR using 

EKF 

 
Fig 4.86- Relative Rotor angle of Gen 3-1 WITR using 

UKF 
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Fig 4.87- Relative Rotor angle of Gen 4-1 WOTR using 

EKF 

 
Fig 4.88- Relative Rotor angle of Gen 4-1 WOTR using 

UKF 

 
Fig 4.89- Relative Rotor angle of Gen 4-1 WITR using 

EKF 

 
Fig 4.90- Relative Rotor angle of Gen 4-1 WITR using 

UKF 

 
Fig 4.91- Relative Rotor angle of Gen 5-1 WOTR using 

EKF 

 
Fig 4.92- Relative Rotor angle of Gen 5-1 WOTR using 

UKF 

 
Fig 4.93- Relative Rotor angle of Gen 5-1 WITR using 

EKF 

 
Fig 4.94- Relative Rotor angle of Gen 5-1 WITR using 

UKF 

 
Fig 4..95- Estimation Error WOTR using EKF 

 
Fig 4..96- Estimation Error WOTR using UKF 

 
Fig 4..97- Estimation Error WITR using EKF 

 
Fig 4..98- Estimation Error WOTR using UKF 
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Comparison of Simulation result 

OVERALL 

ERROR 

WSCC-9 BUS IEEE-14 BUS 

Without 

Transient 

With 

Transient 

Without 

Transient 

With 

Transient 

EKF 0.011 0.066 0.0011 0.0013 

UKF 0.0623 0.0686 0.0066 0.0079 

Table 4.1 Overall error using EKF & UKF 

 

ERROR IN 

SPEED 

WSCC-9 BUS IEEE-14 BUS 

Without 

Transient 

With 

Transient 

Without 

Transient 

With 

Transient 

EKF 5.4899e-04 3.2457e-04 8.5319-e05 1.0907e-04 

UKF 1.7567e-04 2.7429e-04 2.4978-e05 2.1053e-04 

Table 4.2 error in rotor speed estimation using EKF & UKF 

 

ERROR 

IN 

ANGLE 

WSCC-9 BUS IEEE-14 BUS 

Without 

Transient 

With 

Transient 

Without 

Transient 

With 

Transient 

EKF 0.0016 0.0128 0.0022 0.0024 

UKF 0.1245 0.1369 0.0133 0.0157 

Table 4.3 error in rotor angle estimation using EKF & UKF 

V. CONCLUSION 

During the work in this project, Swing equation is used to determine the speed of rotor and rotor angle with the help of 

two methods i.e., Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). The comparative analysis is also 

done by using EKF and UKF for WSCC-9 bus system and IEEE-14 bus system through the simulation in MATLAB. 

Lastly, the transient and steady-state conditions are observed and analyzed for WSCC-9 and IEEE-14 bus system while 

using EKF and UKF.  

 

Estimation capability and accuracy of Extended kalman filter and unscented kalman filter can be check for more Complex 

system also considering the transient in the system 

 

Further research can be done on estimated values of generator’s rotor speed. Either measured speed of generator can be 

replace by estimated speed or not.  Other dynamic state should be derived by using Extended kalman filter and unscented 

kalman filter.  
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