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Abstract: In the semiconductor manufacturing industry, the yield prediction of a product is vitally essential. Its accuracy 

directly affects product cost and customer satisfaction. One commonly known yield prediction and management 

technique is statistical machine learning models due to their high generalization capacity. With the support of rapidly 

increasing data volume, driven by advanced wafer-level processes, an increasing number of Deep Learning architectures 

have recently been adopted for yield prediction in semiconductor manufacturing. With rapid advancements in wafer-

level processes, it becomes feasible to collect defect density data through advanced sensors from testing equipment. 

However, constructing Deep Learning models from scratch requires a lot of expertise in both semiconductor 

manufacturing and machine learning, which is not easy to obtain in modern semiconductor industries. To automatically 

assist semiconductor manufacturing engineers in building accurate Deep Learning models in yield prediction, this study 

first designs and builds a fully-automated Deep Learning yield prediction framework. This framework can assist 

engineers in developing Deep Learning models in a timely manner without time-consuming data preprocessing, feature 

engineering, or architecture searching. It consists of yield simulation, data preparation, candidate models building, and 

ensembling formation. Besides yield prediction, another significant concern is the explanation of Deep Learning model 

outputs. On the one hand, many model-agnostic explanation algorithms have been successfully adopted in many fields, 

providing valuable information for improving model quality and transparency. The explanation logic is intuitive; e.g., it 

calculates the contribution of a feature to the output of the prediction, which helps in finding out pixel areas or categorical 

reasons to focus. On the other hand, due to the complexity of semiconductor manufacturing processes, existing 

interpretable models lack effective inductive bias for proper yield prediction in semiconductor manufacturing, and turned 

out to be unable to simulate disentangled understanding rules. Therefore, current model-agnostic explanation methods 

for explaining Deep Learning model outputs either fail to reason rules about semiconductors, due to insufficient 

representation ability, or contain prohibitive time complexity for searching the activation of nodes or features. As a result, 

existing approaches struggle to simultaneously achieve both high prediction accuracy and high-quality explanations. 
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I.       INTRODUCTION 

 

Semiconductor manufacturing constitutes one of the most intricate, highly automated, and advanced manufacturing 

sectors. The immense difficulty in designing and manufacturing IC chips has resulted in the development of a highly 

specialized and segmented supply chain in the semiconductor industry. In a typical semiconductor supply chain, reticles 

are manufactured in a photomask house and are shipped to a wafer fabrication facility (fab) to create wafers with IC 

chips. Subsequently, packaging houses process the wafers to produce packaged IC chips before they are shipped to 

customer assembly houses for testing and then delivered to customers. Yield enhancement significantly influences 

process reliability, cost efficiency, product robustness, and subsequently market competitiveness. Hence, enhancing yield 

has become a crucial lever to cut costs and increase net profit. In advanced logic wafer fabrication facilities, a mere 1% 

increase in yield would lead to an additional estimated net profit of $150 million, while a 1% drop in yield would give 

rise to a remarkable $250 million loss. 

 

To facilitate yield enhancement, data analytics-driven (DA-driven) approaches, namely machine learning (ML) or deep 

learning (DL) methods, have been increasingly leveraged. Such DA-driven yield prediction approaches are applicable to 

a wide range of tasks in different stages of semiconductor manufacturing and enable the comprehensive monitoring of 

such processes. Specifically, the DA-driven yield prediction approaches are applicable to front-end-of-line (FEOL) yield 

prediction in wafer fabrication, back-end-of-line (BEOL) yield prediction, defect yield prediction in IC packaging, wafer-
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test yield prediction in wafer testing, die-level functional yield prediction in package testing, and test time prediction 

after the circuitry design is frozen. The central role of DA-driven approaches to yield prediction in semiconductor 

manufacturing can be essentially attributed to the types of data ubiquitous in semiconductor smart manufacturing (SSM). 

 

II.       OVERVIEW OF SEMICONDUCTOR MANUFACTURING 

 

The manufacture of semiconductor devices (ICs) constitutes an important and challenging domain of production 

engineering, which is also referred to as wafer fabrication or wafer processing. The fabrication of ICs starts with an 

electronic grade silicon ingot, which is sliced to wafers, polished, and oxidized. Then, thin films are deposited, pattered, 

and etched; details of these steps are recorded in extensive engineering knowledge. The cause for 99.9% of processed 

wafers is ‘defect-free,’ and each IC dies or chips is formed from exposure through mask patterns, including 

interconnections to terminals [1]. 

 

Most devices are intended for consumer products compatible with high-volume fabrication. Wafer fabrication facilities 

(fabs) cost billions and take years to be built. Yield has emerged as a pivotal lever to curb costs and increase profits. For 

advanced logic fab, a 1% increase in yield would result in an estimated additional net profit of several hundreds of 

millions. However, enhancing the yield and passing the pre-sail wafer final test are extremely difficult. The IC product 

is composed of millions of transistors; first, defects must remain below a critical size and volume for process nodes below 

65 nm. The process is inherently interrelated; a discrepancy in a critical dimension immediately affects electrostatics 

operation with delay. Random non-detection process anomalies in aberrations or drift could be a killer that wipes out 

revenue entirely. Device development time can take years. 

 

Yield enhancement analyses to measure mechanisms and models comprise statistical and data-analytics-based 

approaches. There is increasing employment of machine learning to augment yield enhancement strategies, such as 

analyzing critical process steps by widely applied feature selection to select process step-contributing yield (Y) 

detrimentally, assisting in troubleshooting and process optimization by data mining in search of processing parameters 

discoverable from massive process logs of similar rectangles, detecting the potential cause referring to the process or test 

steps with high likelihood malfunction for anomalies owing to instantaneous or periodic causes by clustering algorithms, 

automatic defect classification by pattern-recognition algorithms and supervised ML using server observable aberrantly 

measured metrics for test tool-to-test tool malfunctions, spotting lot/module defects building on spatial-temporal 

information. 

 

III.      IMPORTANCE OF YIELD PREDICTION 

 

The semiconductor manufacturing industry is one of the major industries that contribute to the worldwide economy [1]. 

Return on investment (ROI) improvement has become an urgent priority for this industry, especially the yield 

improvement. Yield is defined as the ratio of good (i.e., defect-free) products to the total number of produced products. 

The yield rate in wafer fabrication or semiconductor manufacturing is usually very low due to defect introduction. Hence, 

waivers need to undergo an extensive set of inspection, test, and/or repair operations to identify and rectify defects or 

faults. Those chips or dice that pass all inspection and/or test operations are sold. On the other hand, those chips or dice 

that fail in any operation are classified as non-functional products. Wafers that fail to pass inspection/repair operations 

are scrapped. If the yield rates in terms of good or functional products can be predicted in advance before the inspection, 

testing, and repair operations, the operations can be executed in a more cost-effective manner. 

 

 In the context of semiconductor manufacturing, such a prediction task, also referred to as yield prediction in this paper, 

is defined as predicting the yield state of the wafer of interest or target wafer based on the past wafer-level inspection, 

testing, and repair data. It is required to perform such a prediction task on each newly and/or incoming wafer after all the 

related yield attributes have been set. Thus, the visualization-based exploratory data analysis needs to be executed in an 

automatic or semi-automatic manner. The return on investment of production activities in the semiconductor industry 

relies heavily on high semiconductor yields. Thus, yield improvement becomes an urgent priority in semiconductor 

manufacturing industry. The semiconductor fabrication process involves several hundreds of different fabrication 

processes leading to hundreds of defects. Each of these processes is performed by dedicated machines known as 

equipment. The yield outcome of the semiconductor manufacturing process is a binary outcome determined based on the 

measurement parameter values obtained from the measurement machines. 
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IV.       DATA ANALYTICS IN MANUFACTURING 

 

Data analytics plays an important role in manufacturing where it can be applied to forecast/estimate product specification, 

equipment performance, resource utilization, yield outcome and other key business objectives. Semiconductor 

manufacturing is a highly sophisticated and capital-intensive business with numerous complex processes for circuit 

pattern transfers onto silicon wafers. In this manufacturing environment, the often unexpected yield loss due to the 

introduction of a multitude of process or equipment disturbances can have a significant impact on product delivery and 

thus the overall business performance. Therefore, automatic systems/methods to predict the yield outcome of a wafer 

processing job prior to the final inspection are thus highly desired by the manufacturers [2]. The rapid advancement of 

artificial intelligent technology enables the development of a data-driven yield prediction type of knowledge discovery 

system, which detects possible non-conformance wafers even before the final visual inspection is completed [3]. This 

proactive type of predictive analytics approach improves the efficiency of the final inspection, optimizes the inspection 

planning and reduces the wasted inspection resources. 

 

The work to be reported in this paper covers two major aspects of the data analytics-driven process yield prediction in 

the semiconductor manufacturing, with a focus on the key data visualization and modeling techniques employed. The 

first aspect is the data visualization of the process data generated during the wafer processing machine operation and 

near-infrared chemical imaging inspection and the challenges in visualizing a high-dimensional dataset with a nonlinear 

relationship. The second aspect is the choice of data-driven classification techniques for the data-predictive yield 

modeling and compares their performance obtained on a diverse test-bed. In addition to the emphasis on the data 

technique aspects, the paper concludes with a brief note of future work directions in the topic. 

 

V.      TYPES OF DATA IN SEMICONDUCTOR MANUFACTURING 

 

This section introduces a series of data types regarding semiconductor manufacturing, which aids in the following review 

of the corresponding data analytics-driven approaches. More specifically, the section reviews batch data with an eye 

towards advance wafer-level virtual metrology, a typical type of challenging task in semiconductor manufacturing. 

 

 
Fig 1: Big Data Analytics for Semiconductor Manufacturing 

 

With the increasing deployment of data analytics technologies, the semiconductor industry is experiencing a data 

revolution. Genomic sequencing generates more than 1 exabyte of raw data every year. This is comparable to the size of 

all the worldwide written words in human history. In the semiconductor industry, the fast-growing data sources include 

fault diagnostic sensors, process scanners at various stages of the manufacturing flow, and probe test and final test at 

final assembly stages. Added up, these sensors generate terabytes of raw data every week. Such an abundance of sensor 

data creates an unprecedented opportunity to leverage predictive analytics to automate much of the data monitoring and 

postmortem process analysis involved in current operations. Data in the semiconductor industry may be classified into 

time-stamped and non-time-stamped data. 
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Time-stamped data are generated by sensors to monitor the ongoing processing of raw wafers. Smart production test in 

the semiconductor industry monitors the product quality by testing measurements that typically involve complicated test 

setup and data analysis. A huge amount of test data may be generated and retained for long periods of time. With advanced 

process control being widely adopted for production quality assurance, there is a pressing need to develop data analytics-

driven software systems to monitor the processing of raw wafers for automatic detection of process anomalies and clues 

for the suspicious cause. Non-time-stamped categorical data represent information in discrete categories. Fixed attribute 

data include continuous measurements such as external metrology results, categorical measurements such as 

identification information describing the batch processes on specific tools. Variable attribute data include regression 

outputs such as spatially formative pulses describing 2-D product structures or summed-up measurement variable sources 

describing total figure of merit. 

 

Process data analytics-driven virtual metrology is a new data analytics-driven approach to improve manufacturing yield 

and efficiency. Using this approach, prediction models are built using real-time process monitoring data to replace 

physical metrology tools that may be slower, more expensive, or less accurate [4]. A standard prediction process is 

described, which is usually composed of data acquisition, data preprocessing, and model training/test/prediction. The 

conventional comparison method is implemented to predict final metrology values at final assembly. Long short-term 

memory (LSTM) and auto-regression commonly used in time series prediction are adapted and benchmarked to predict 

impending or intermediate metrology values. Illustrative examples using multilayer perceptron and LSTM-prediction 

models are provided based on a plasma etching data set described in. 

 

5.1. Process Data 

This chapter details the application of data analytics-driven yield prediction in semiconductor back-end assembly and 

test. The data analytics framework focuses on predictive modeling and fault detection. In the framework for predictive 

modeling, several data-driven yield prediction approaches, either using historical lot-level non-visual data, inherent visual 

data, or combined models of both non-visual and visual data, are introduced. In the framework for yield fault detection, 

innovative approaches for novelty detection, using wavelet transform and generative modeling, are introduced. The 

method can effectively detect new yield faults, even without prior known fault data. This study provides a better 

understanding of the development of data analytics-driven approaches to yield prediction. And also discusses future 

opportunities to build on established methods in non-semi-conductor applications, including big data, deep learning, 

forecasting, autoML, and natural language processing. 

 

To maximize yield, product quality needs to be ensured at every stage of the process—from wafer manufacturing and 

circuit designing, through fab fabrication, to back-end packaging. Traditional yield prediction relies on prior product 

knowledge. With scaled-down rules of thumb, statistically significant models can be established to predict yield based 

on design for manufacturing criteria. As the demand for faster time to market and shorter design cycles increases, prior 

product knowledge cannot be easily obtained, and rapid yield prediction is needed [5]. As a result, predictive modeling 

approaches that solely rely on process data instead of prior product knowledge have led to intensive research interests in 

data analytics-residents in semiconductor manufacturing. 

 

This chapter focuses on the application of data analytics-driven approaches to yield prediction in semiconductor back-

end assembly and test. Though yield prediction in post-fab processes, including substrate probing, assembly, final test, 

and packing, has been studied in the past, these models remain relatively static, of limited generalizability, and 

computationally intensive. A rapidly updating and flexible data analytic framework that allows simulation-driven 

modeling is still needed. In this regard, there are opportunities to explore the abundant process data to develop data 

analytics-driven approaches for predicting and understanding yield-fault relations. Furthermore, technology scaling is 

paving the way for wafer-scale package-level assembly. Advanced three-dimensional integration (3DI), in which chips 

are assembled and interconnected in a package, is driving the miniaturization of devices to achieve higher levels of 

integration. However, it can also lead to yield loss, which may not be comprehensively modeled with prior knowledge. 

 

5.2. Quality Data 

Machine learning and data analytics have been widely utilized in yield prediction, diagnosis, and process optimization. 

Machine learning alone is an unlikely candidate for a suitable production solution in many problems. Therefore, data 

analytics-driven approaches combining mathematical models and data sciences methods would be the most suitable yield 

prediction solution. Yield prediction methods with two approaches of data analytics-driven are proposed, and yield 

models with various structures are built with multivariate soft sensor technologies, Gaussian process regression (GPR) 

and hybrid Metamodel-based design of experiments, simulation-based modeling.  
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When combining the two data analytics techniques, the multivariate soft sensor technology and GPR-based time sequence 

prediction model, the detailed processing conditions and factors of 70- to 130-mm in diameter wafers predict efficiently. 

In this research, a hybrid simulation-based modeling with a technique based on the Morris screening for Exponential 

function, a Polynomial function, and a Gaussian function as surrogate models are combined to meet faster yield prediction 

with accuracy. 

 

The advancement of artificial intelligence (AI) technology generates a system with rapid prediction timings and 

approximate predictive accuracies. However, the AI system's prediction cannot check the valid range of the producing 

numbers and parameters, and the complex design structures are required. To design an accurate yield prediction solution, 

a methodology including detailed verification processes and sensitivity analyses against controlling parameters will be 

investigated. There is also a necessity for innovative technology that ensures very stable and high yields amongst the AI-

based smart factories. The potential direction includes a hybrid model design with devising ensemble prediction 

methodologies and metamodels. The semiconductor industries adopt innovative technologies for the highly productive 

smart factories. Because of the tremendously complex manufacturing process in these industries, metamodeling with data 

analytics-based soft sensors will be one of the most suitable solutions. To enhance estimation timing and prediction 

accuracy in metamodeling-based soft sensor technologies, high-dimensional quantity measurement data can represent 

input features by various vision-processing and pattern-recognition technologies. 

 

Translating highly unstructured pattern data into structured data by image processing has been focused. Most 

manufacturing industry challenges are yield prediction problems, where the outcome class of interest is usually 

significantly under-represented. Yield prediction classes are also examined by focusing on unrepresented class 

visualization to comprehend the underlying pattern better. The challenges are addressed through improved data sampling 

techniques, carefully revealing the minority to majority class relationship without losing other data distribution 

characteristics. For the future direction, potential techniques to further enhance visualized pattern yield prediction and 

other industries through an anomaly detection approach will be proposed [6]. 

 

5.3. Equipment Data 

In semiconductor manufacturing, equipment data are widely adopted in data analytics-based yield improvement tasks. 

Equipment-level or product-level measurements that contain the information of equipment performance/behavior are 

called equipment data. Equipment data usage includes but are not limited to the maintenance scheduling based on 

operating status changes, yield prediction based on the performance as well as process variable changes, and product 

quality/time prediction based on condition monitoring. The equipment data collected in the smart factory are generally 

time-series data or time stamps. Therefore, it may require nontrivial preprocessing steps to be used in a variety of data 

analytics tasks. Dealing with high-dimensional features is another common challenge, especially for using shallow 

models that highly rely on the proper feature engineering in many cases. 

 

Directly applying black-box deep learning models for time-series prediction tasks has shown superior performance over 

the state of the art [2]. Given their strength, natural and easy-to-use models, long short-term memory (LSTM)-based 

regression models are proposed to predict impending metrology measurements based on sensor data of the equipment in 

an efficient way. Recent studies have developed various approaches to advance the analytics of time-series data, either 

for the sake of product yield improvement or for the sake of process control. In those analytics-based data-driven 

approaches, detailed equipment time-series data that were measured by sensors installed on each piece of equipment are 

also used. 

 

These sensor data contain the information on the lot path history of products as well as equipment conditions. To the best 

of knowledge, however, the state-of-the-art time-series analytics of the equipment data are focused mainly on yield 

prediction [4]. Even if the yielded product is classified into defective and non-defective by procedure metrology, 

equipment data analysis is surrounded by chaotic issues caused by difficulties in deal with variant data encodings across 

tools, diverse features for different engineering problems, and masking many additional data processing and scoping 

steps. 

 

5.4. Environmental Data 

Environmental data in semiconductor manufacturing include temperature, humidity, and pressure, which are vital for 

various reasons. In some equinoxes or when manufacturing tools are safeguarded, the temperature around the tools may 

gradually change significantly while the wafer quality remains acceptable. The environmental condition sensors can help 

determine when the tool is too cold to produce correct work. The pressure of a vacuum chamber is often monitored, 

which is similar to monitoring critical variables in etch and deposition chambers.  
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Additionally, researchers have found that many random failures of tools can be directly associated with fluctuations in 

these environmental conditions, and excessively high humidity can cause the glass chip to gimmick. These operating 

conditions can affect chip-to-chip uniformity and need to monitor over time [5]. Some examples are discussed below. 

The normalized environmental data were first preprocessed using a time window of 5 minutes and a median if some 

value exceeds a threshold. Exploit PCA to select a reduced feature set that can best describe the system states [6]. Time-

invariant PCA is proposed to provide more relevant and compact features on these time-varying systems. This online 

method is based on the singular value decomposition of the past data covariance. For each new data record, the new 

covariance matrix is formulated. Previous singular value vectors can become less relevant; thus, the old singular vectors 

need to be updated by the previous two SVD vectors. The eigenvalue threshold is used to determine whether to keep 

replacing the eigenvectors or start refreshing the eigencomponents. The chip-level process states and time-invariant 

features can instead be rebuilt for equipment monitoring and process/diagnosing tool spread. 

 

VI.      STATISTICAL METHODS FOR YIELD PREDICTION 

 

Similar to statistical process control (SPC), industrial engineers are often keen in applying a yield prediction method to 

proximately assess the fluctuations of death yield within wafer lots/processes so that immediate actions can be taken to 

avoid further economic loss due to the unachievable yield target. Particularly for semiconductor fabrication processes, 

most of the yield prediction methods are statistical and rely on the assumption that financial yield losses are stable over 

time. As a result, predictions are absolute and not based on the current process capability or system state. In fact, as a 

process flows downstream, the design rules for financial yield losses or critical defects may no longer hold. Several 

approaches have been proposed to classify defects that cause yield losses into low- and high-impact defects but are not 

solely based on 1/f process variations. 

 

 
Fig 2: NSM for accurate statistical analysis and yield prediction 

 

This recently-published study proposes a new framework that bridges wide-band defect classification and use of historical 

yield data to recover the effect of defects on process capability, which is then incorporated into a regression-based zero-

defect yield prediction model on two-way decisions (preventive maintenance). This method allows engineers to assess 

the effect of currently-controlled defects on the capability of future production on early, recommended minimum feature 

extraction and maximally broad inspection coverage. It is believed to be a new perspective for cost-effective diagnosis 

and corrective action of yield-ratio defects across different inspection depths [1]. It would also be interesting to combine 

it with further enhancement of other data analytics methods. Detailed explanation of each method and its applications is 

also provided. A hierarchy framework to illustrate the flow of data analytics methods in industry is introduced. 

Understanding and anticipation of data characteristics are the keys to types and objectives of knowledge discovery and 

utilization leading to various process performance improvements. 

 

6.1. Regression Analysis 

Yield prediction is a critical task in the semiconductor industry to parry yield loss. The proactive mitigation measures 

underpinning this task require an understanding not only of the complex manufacturing processes but also of the implicit 

derivation of defect distributions based on process data. However, an accurate and holistic comprehension of wafer yield 

is intricate due to the interaction between multiple big data sources and complex data characteristics. Previous approaches 

primarily focused on developing effectively accurate prediction models but overlooked the interpretability of the 

prediction. Knowledge-driven and model-driven methods are either insufficient for accurate prediction or not sufficiently 

able to interpret cause-effect relationships. 
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 By integrating high-efficiency knowledge-driven factor extraction, an explainable prediction model for automated high-

yield prediction, termed as sERF (explainable regression forest), is proposed. 

 

Unlike the conventional method, which is not automatically tuned or interpretable across different designs, sERF can 

efficiently and effectively learn and accept semi-supervised predictors without tuning, and deliver transparent prediction 

with clearly defined cause-effect relationships. Apparently, the proposed schemes present a significant improvement over 

the conventional retain-and-train method, as they yield a considerable substantial yield improvement. In addition, 

interpretability and adoption have been mentioned as future areas for work, since the current model is too complicated 

for engineers to interpret decisions [1]. Rather than being a black box, AI models for yield prediction generally need to 

deliver rational explanations for users, both for the predictions and for how the features affect decisions. 

 

The rapid advancement in semiconductor electronic products has increased the demand for integrated circuits, driving 

the rapid growth of the semiconductor manufacturing industry. Because of the complicated texture and intricate geometric 

structures of ICs, semiconductor manufacture usually consumes substantial fabrication resources, resulting in a lower 

manufacturing yield. Early yield prediction at the design phase is necessary to obtain manufacturable designs. Numerous 

works utilize the existing design parameters as inputs to build the yield prediction models, but they do not consider the 

feature models due to the complexity of building them. A simple good-features-to-good-structures framework is proposed 

to construct feature models to build quality aware designs under uncertainty, such that early yield prediction is possible. 

To show the effectiveness of the proposed framework, an industrial case is studied [4]. 

 

6.2. Time Series Analysis 

To maintain competitiveness and enhance profitability, semiconductor manufacturing companies need to maximize yield 

and minimize operational and investment costs in a chip manufacturing line [4]. However, with the increasing complexity 

of a semiconductor wafer fabrication process, it is getting more difficult to increase yield aggressively. Therefore, there 

exist many interesting yield prediction tasks in a chip manufacturing line. This work focuses on a surface roughness yield 

prediction task, which uses the measurement values of both manufacturing process and particles in the prior process as 

features, and aims to predict the wafer level yield of surface roughness. To achieve this goal, a machine learning based 

approach is developed to rank the importance of features first, and a lightweight feature engineering approach is proposed 

to reduce the feature dimensionality while preserving most of the original valuable information. Moreover, this approach 

is generic and easy to implement, and is demonstrated with ordinal categorical target variables and process capabilities 

quantized as categorical values. An extensive study on the design of regressors is conducted to help production managers 

to choose suitable regressors to optimize the yield prediction [1]. Semiconductor manufacturing is a multi-stage process 

involving complex fabrication methods to achieve the desired product properties. In the fabrication process, a wafer is 

produced through various fabrication processes in different fabrication equipment, during which, the fabrication 

equipment and processes are adjusted and modified according to the development of semiconductor production 

technology. Such changes may result in an increase in non-standard devices and lead to variation in the electrical 

characteristics of wafers in the fabrication process. Consequently, the quality of wafers in time may deviate from the 

standard or desired value. Thus, a forecasting operation is required to help the fabrication processes maintain the wafer 

quality outside of manufacturing processes. A time series context-based model is proposed with reasoning mechanisms 

to address the problem of wafer quality forecasting. Its reasoning mechanism helps to better capture the pattern of 

localized equivalent quality in the time series. Experimental results on industrial applications demonstrate the 

effectiveness of the proposed approaches. 

 

VII.       MACHINE LEARNING TECHNIQUES 

 

In semiconductor manufacturing, the increasing complexity of integrated circuits leads to more processes operating under 

tight limits. This leads to an increase in variability, often resulting in defect generation, which decreases manufacturing 

yield. Metrology data should be analyzed to extract hidden information. A strong industry requirement for data analytics-

driven yield prediction is consequently raised, while the increasing accuracy and speed of yield prediction promise 

business competitiveness. 

 

Yield prediction is a complex regression task with the scattering of class one devices. As an application of data analytics, 

yield prediction methodology involves capturing mapping relations between the fine-grained data and the corresponding 

yield before decisions are made on successive operations. In the context of semiconductor manufacturing, fine-grained 

data encompass parameters and variables quantifying process capability, equipment, environment, circuits, and devices, 

while yield is defined as the proportion of good devices passed on by manufacturing yield.  
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Data analytics-driven approaches to yield prediction in semiconductor manufacturing largely concern data representation 

learning strategies based on machine learning and deep learning techniques. 

 

 
Fig 3: What Is Deep Learning? Definition and Techniques 

 

Numerous machine learning-driven and deep learning-based architectures for yield prediction are constantly emerging, 

owing to special characteristics like superior performance and robustness. The architecture of yield prediction models 

sequentially consists of three components: representation, transformation, and prediction. The representation layer 

collects and pre-processes the input data. The transformation layer encodes fine-grained input data to a yield descriptor 

via a multi-layers network stack. The prediction layer utilizes a yield descriptor mapped to yield to be strategically 

predicted. Mathematically, the sequential mapping from data to yield is expressed as follows. The multiple-layer 

architecture makes it possible to obtain arbitrarily complex functions via a non-linear mapping. Meta-heuristic algorithms 

are further developed to select an appropriate architecture among its candidates. 

 

7.1. Supervised Learning 

The semiconductor manufacturing flow is generally integrated circuits (ICs) wafer preparation and fabrication process 

followed by packaging and testing process. Wafer preparation includes wafer growth, slicing, lapping, cleaning and 

surface treatment. While in manufacturing, IC designs are realized and etched onto substrates through a series of 

fundamental processing steps, which can be classified into four domains: photolithography, chemical vapor deposition 

(CVD)/physical vapor deposition (PVD), ion implantation/diffusion and etching. Wafer sorting relies on test program 

equipment (TPE, either functional or parametric testing), whereby chips proving previous fabrication passes qualify as 

good die and the rest are defined as bad die. With process understanding and an explosion of manufacturing data and 

computing power, automated yield prediction (Yp) is possible [3]. With more accuracy prediction to identify a possible 

bad result in wafer processing as early as possible to reduce unnecessary cost incurred in testing and having less human 

resources intervention in the batch prediction over a period of time. 

 

Generally, machine learning (ML) has two classes. One of them is supervised learning model, which is most common in 

production yield prediction [4]. Supervised learning models within various machines used in modeling approaches. 

Determining whether enough results will yield results from the simulation data and whether filtering on data without 

modeling is necessary for modeling for a soft sensor is likely to be a challenge. Classifying the condition of past 

manufacturing results as passive and predicting why those conditions yield bad is active. We examined two supervised 

learning models (Artificial Neural Network, ANN and Extreme Gradient Boosting, XGBoost), machine learning 

algorithms, to evaluate how they classify the past records of wafer simulation for the condition yielded bad results. With 

that classification model, the problems needing to be investigated in the examined wafer simulation data can then be of 

concern. 

 

7.2. Unsupervised Learning 

Unsupervised learning (UL) is a class of machine learning methods that uses data with no labels. The aim of unsupervised 

learning is to discover an underlying structure of the data. Using this underlying structure to aggregate the data into 

groups makes it possible to perform subsequent supervised learning tasks like classification or anomaly detection on 

them. It has the potential to push forward both productivity gains in manufacturing and the fundamental understanding 

of new healthcare data [1]. There exist numerous unsupervised machine learning algorithms, each with its respective 

assumptions and strength, the most popular which are: k-means, Gaussian Mixture Model (GMM), hierarchical 

clustering, and non-negative matrix factorization (NMF). 

 

Data preprocessing in unsupervised learning focuses on feature selection and dimensionality reduction leading to better 

clustering results, with several methods available such as PCA, t-SNE, autoencoders, and so on. Proper partitioned 

clustering, the default of unsupervised learning, generates a good number of clusters where each cluster contains a 

considerable amount of points. 
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 Beyond clustering quality, it’s interesting to know how strictly each point belongs to its cluster. The fuzzy c-means 

(FCM) clustering algorithm is an extension of k-means clustering that allows datasets to have overlapping clusters, i.e. 

soft membership. FCM achieves this by assigning each point an individualized membership degree determining its 

strength as a member of each generated cluster. An additional output of the FCM algorithm is the measure of fuzziness 

per cluster indicating widely each point is supported by its clusters; widely distributed clusters have a high fuzziness 

degree. 

 

 
Fig 4: Semi-Supervised Learning 

 

Fuzzy clustering can help resolve the topic of cluster filtering since while the clustering output can clearly identify 

clusters, these clusters don’t necessarily mean any importance unless a subset of the clustering relates to a useful 

characteristic within the entire dataset. This can help ensure that the number of selected clusters is reasonable and that 

the fuzzy clustering output can effectively rare meaningless overlapping clusters, encouraging trusts to the clustering 

output. 

 

7.3. Deep Learning Approaches 

Yield prediction, as a subcomponent of yield enhancement, plays a pivotal role in the semiconductor industry. With 

semiconductor chip designs advancing toward more intricate architectures, complicated manufacturing processes with 

ever-shrinking feature sizes, and diverse products catering to burgeoning computing capabilities, effectively predicting 

yield is essential for resource optimization, cost control, and yield improvement strategies. In recent years, many recent 

deep learning techniques, including comprehensive CNNs, temporal models with attention mechanisms, and ensembles 

of hierarchical temporal models, have been employed to improve yield prediction reliability by capturing complex 

features both in a structure-aware and sequence-aware manner. Despite the progress, the rapid evolution of semiconductor 

manufacturing technologies poses significant challenges for deep learning models to handle potential concept drifts. 

 

To tackle this issue, a multi-scenario in-die yield prediction framework utilizing exception-based explainable ML 

techniques is proposed. Various data-driven yield prediction models, including shallow ML techniques and neural 

networks with different complexity, are developed and benchmarked. A novel prediction explanation approach based on 

counterfactual reasoning is proposed to analyze model prediction behavior under anomalous scenarios. Empirical studies 

are conducted on production HVM data sets, demonstrating that the proposed framework enriches the current 

semiconductor smart manufacturing analysis capability with a preliminary attempt to enhance the transparency of black-

box models [1]. In semiconductor manufacturing, product quality is assessed using a combination of post-silicon tests 

including Vmin, IDDQ, and DC test. Test results are aggregated as a product-level yield score which is used to classify 

the product as either ‘good’ or ‘bad’. Focusing on test quality prediction, the yield score is time series data that contains 

rich yielding and non-yielding behavior. Modelling time series data is challenging as the model needs to infer the right 

temporal position and interval between observations. Despite conventional forecasting approaches that heavily rely on 

engineering heuristics to extract temporal features from the time-series data, the proposed method focuses on deep neural 

networks to automatically exploit unbiased temporal features hidden in the time-series data. 

 

In each time interval, the Bi-directional Long Short-Term Memory (Bi-LSTM) model and Time Distributed layer exploit 

temporal features based on state transition and attenuation principles, and the Convolutional Neural Network (CNN) 

attains near-zero latency and describes cross-sectional behaviors in a single time interval. Further, a focus on 

explainability motivates use of surf time interval aggregation which allows domain experts to consult and interpret model 

predictions using a temporal behavior understanding framework. Novel designs of aggregation-level explainable models 

are proposed as a trade-off between accuracy and explainability [4]. The time- and aggregation-scale- based CNN + 

Gradient Weighted Class Activation Map model is highly explainable and accurately predicts time- aggregated quality. 
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The proposed models can empower domain experts to take actionable insights to correlate and stop malfunctions in the 

manufacturing process while keeping the product yield high. 

 

VIII.      DATA PREPROCESSING TECHNIQUES 

 

Manufacturing semiconductor products is a very complicated and complex process. A semiconductor wafer will pass 

through many stages during the fabrication processing. Semiconductor yield is the main measure of the effectiveness of 

a semiconductor process. In these processes, some wafers will end up as 'bad dies' which have to be discarded. Therefore, 

yield prediction is essential in semiconductor manufacturing. 

 

 
Fig 5: Data preprocessing techniques 

 

Data preprocessing techniques also include handling categorical data, outlier detection, and data normalization. The 

categorical data handling techniques include one-hot encoding and lab encoding. Numerical data outliers can be identified 

using interquartile range based filtering. For data normalization, eliminating features can be performed to get rid of 

constant features. Standardisation and min-max scaling can be used to normalize data feature vector values. Outlier 

cleaning can significantly decrease predictive yields training time with random forests and gradient boosting model. 

 

The product yield should be classified into two categories: a 'best die' that meets requirements, and a 'bad die' that has 

been produced with defects. Before proceeding, the data set must be imported to add necessary libraries. Next, the dataset 

should be split into a training and a test portion. To increase clarity and enhance signal quality, the 'train_df' data set 

should undergo normalization. Only relevant numerical features are needed in the model training stage, which should 

undergo NaN yield cleaning, outlier detection and removal, and model feature selection steps prior to receiving training 

data. 

 

8.1. Data Cleaning 

Frequent representations of labeled data patterns indicate either good yield outcome (G) or bad yield outcome (B) due to 

the faults in the mold/test data or on the steps involved in CHK YLD. The one that reflects bad yield with a high-degree 

scatter pattern is selected for the analysis. The outlier candidate patterns considered as a new cluster are validated with 

additional knowledge data or modeled as non-events, if possible [3]. The pre-processed data patterns are clearly 

visualized by a scatter plot; however, detailed knowledge on the faults causing bad yield is required to preprocess the 

data before transforming it into a visualized pattern dataset [5]. In a semiconductor IC manufacturing process, many types 

of structured data, such as parameters setting the flow of fabrication, inspection visualized/physical data, and process 

metrology signals, are captured and recorded in various data wolckers at every processing step. Nonlivive outward 

processing test observations are completed for the together returning wafers. However, due to high manufacturing 

complexities and the nature of the data, predicting the yield outcome is significantly difficult. The predominant class of 

production is of good-yield (G) wafers, but to ensure that no defective chips get through to packaging, modern ICs often 

contain many hundreds of MB of test data, with >99% of the test scenarios passed, which often become a performance 

bottleneck. This situation raises an imbalance classification task to be solved. To propose an accurate yield prediction 

algorithm, the development philosophy was divided into three blocks.  
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The first block was to preprocess visualized pattern dataset too and frequently, separate outlier candidates of B patterns 

for investigation. In the second block, an information integration process was applied to assist data preprocessing. Hybrid 

classification and sampling schemes were presented in the third block to improve the modelling precision. 

 

8.2. Data Normalization 

To join the analytics pipeline for yield prediction, the data from the manufacturing process, parameters, setup procedure, 

and yield results must be assembled into a common format. The presentation and structure of manufacturing data can 

vary significantly across different tools in the fabrication process. Data collected during inspection for testing yield results 

can be numeric, video, or image data. Undetected noise and defects may also exist. Visualizing and exploring huge 

datasets together can be difficult and inefficient. Even with advanced data exploration capabilities, data from selected 

processes must be preprocessed, aggregated, and filtered to maintain high data quality. This data preparation is usually 

performed differently across different processes and is time-consuming [3]. 

 

In practice, most of the yield prediction models either consider data from only the last stage process, or data from several 

stages without a systematic strategy on what data is useful for prediction. In these cases, the risk of missed out on critical 

data can be high. It’s possible that the selection of data filtered on only one characteristic of the patterns for modeling 

may lead to lower performance models. With the vast number of possible data combinations, building models at too early 

a data filtering step may result in lower performance. In addition, eliminating too many data inputs may lead to the loss 

of valuable data and unexpected yield influences. On the other hand, building a model with all the data collected along 

the way from all selected processes can be inefficient and result in high model complexity, making it difficult to examine 

or improve model performance. Therefore, a systematic data exploration methodology to evaluate and select data 

combinations for yield prediction is developed. 

 

Existing data exploration tools only present the data exploration results but do not provide the integration with modeling 

steps or an interface for model performance evaluation, making the model building process incomplete. Relying on 

manual evaluation, a candidate yield prediction model and its input data from tens of millions of possibilities must be 

selected manually in an iterative, headache process. Automating the candidate model selection process and embedding 

the data exploration and pre-processing steps in it can greatly facilitate data-driven yield prediction model development. 

 

8.3. Feature Selection 

To enhance the understanding of yield from multiple perspectives and boost model performance through rigorous feature 

selection, a tree data structure is proposed. To shape the yield drivers and extract features from the aspect of process 

parameters, the features are extracted from Chebyshev polynomial fitting curves from Run to Run process parameter 

data. At the same time, features are constructed to quantify the relationship among equipment, feature parameters, and 

wafer attributes based on the procedure of processing a wafer. The constructed features consist of not only orthogonal 

equipment features but also cross-feature parameters, which contribute more profound insights and quantitative meanings 

than previously focused features. Based on this tree data structure, massive features are extracted from 1-U equipment 

parameters to 1-2 interactive equipment parameters, and a dataset of 10320 × 47 features is obtained for further modeling. 

 

Feature selection (FS) is crucial to ensure focused research, enhance model performance, and speed up modeling 

processes. Recursive feature elimination (RFE), which combines the top two best model performances among ten models 

to rank and select features as candidates, is performed in a model-agnostic way. The tree structure feature is initially 

converted to a simpler form, where a coefficient index is generated according to the tree structure and feature 

characterization. The multi-model integration and RFE are gradually applied in this index list to obtain reduced features 

while boosting model performances. As a result, FS totally reduces the dimensions of 10320 × 47 features to 84 × 39 

features through three iterations of elimination. 

 

IX.      MODEL EVALUATION METRICS 

 

Various metrics exist for model evaluation, such as Relative Absolute Error (RAE) and Mean Absolute Error (MAE). 

However, these metrics assess performance from a single-dimensional viewpoint of measure error with no regard for 

forecasting quality. In the semiconductor context, models can forecast the yield as an overall percentage of yields and as 

a distribution. Evaluation metrics for comparison of a pair of yield-predictive models need to treat over-forecasting and 

under-forecasting of yields on an equal footing. The design of such evaluation metrics is not without merit in other 

domains of applications. In the Telecom sector, the accuracy of call forecasting models may be assessed as: ‘To what 

extent do forecast calls failed to be made? How many actual calls are not foretold?’ Holistic metrics quantify the coverage 

of calls measured from a network’s signaling nodes in terms of CIF, and the delay, error, and non-covered calls measured 
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in terms of PER [7]. These metrics essentially aggregate performance measures across the lenses of non-given call. 

Outside domain-specific applications, such a framework of designing evaluation metrics needs to treat quality 

comprehensively, especially when dealing with curvilinear measures. 

 

In the semiconductor industry, inspection of wafers is critical for improving product yield, product quality, and reducing 

costs [4]. However, it is costly and challenging to implement. To alleviate the cost, the newly proposed onchip soft 

sensors can sense process and equipment conditions to predict impending normal inspections using runtime sensor data 

and predictive models. The widely used procedure is to train a regressor from historical data of normal inspections and 

their corresponding sensor conditions. LSTM can characterize the sequential dynamic pattern of the sensor signals and 

capture the implication of sensor signals on upcoming inspections. Any tuning policies aimed at maintaining process 

conditions can apply re-calibrated models for new product lots. However, there are only very few works focused on soft 

sensing forecasting. Furthermore, LSTMs are novel for the semiconductor MEOL inspection forecasting task since 

traditional statistical methods like linear regression with auto-regressive moving average terms are dominant. 

 

9.1. Accuracy 

Given the complexity of the domain knowledge in yield prediction, the experts in this domain are limited in number and 

usually cannot be transferred across companies. The evolving and volatile business, sensor, metrology and edge detection, 

model drift, and concept drift in manufacturing processes can cause prediction accuracy degradation across time. The 

width of the distribution or population should also be acknowledged, where models having similar accuracy can still 

make totally different decisions. Finally, an explanation strategy that explains the automated machine learning solutions 

is decidedly required as end-users need to understand how the solutions came about, and trust it before they act on it [1]. 

Modern smart manufacturing systems generate extensive multivariate time series data which can be monitored and 

analyzed for gaining insights into the production-building process. This also applies to semiconductor manufacturing, 

where time series data can provide critical insights for yield predictions, thus enabling informed decision-making for 

optimal process control and lower manufacturing costs. Nevertheless, timely predictions of these yields at a required fine 

granularity remain challenging owing to the additional complexities of massive production volume data, varied process 

flows, heterogeneous fabrication facilities, and ever-increasing feature space. Data-driven approaches have emerged as 

a mainstream way to build accurate yield models to address these challenges [6]. Such approaches can leverage modern 

machine learning (ML) methods to construct accurate models for mapping relevant features to yield values, generally 

requiring limited prior knowledge and assumptions of the underlying physics. Nevertheless, the data-driven approach 

relies heavily on the availability of sufficiently high-quality training data. 

 

Corrupt and incomplete data often lead to inaccurate models, thus limiting their deployability in practice. Furthermore, 

most state-of-the-art data-driven approaches are designed either to accurately predict yield or to select relevant features 

but selecting relevant features to facilitate accurate yield prediction using the selected features has yet to be explored in 

the semiconductor manufacturing context. Recent years have seen a growing demand for machine learning based yield 

prediction models in the semiconductor industry, but there are still unfulfilled needs. Domain knowledge in this area is 

retained largely in the form of best practice so can be very difficult to share. Some of the knowledge can be extracted 

from products built in the past, but others cannot, because they are still the object of intense research. 

 

9.2. Precision and Recall 

Recently, the focus of attention has been drawn to the issue of precision and recall along with their application in 

manufacturing yield prediction. It had been argued previously that the best performing machine learning are such 

algorithms that can handle an extreme skewed data situation. It is very essential to improve yield prediction in a 

semiconductor manufacturing process. A major source of revenue loss for these manufacturers is the failure of ICs or 

silicon chips after testing them. These failures can be caused by mismatches during the manufacturing process or 

deterioration due to environmental factors. On a newly fabricated wafer, inspections are performed after each of the 

layers. These inspections detect the trouble area to divert the wafer to rework process or to scrap. Noise filtering methods 

are employed, in order to ensure that the noise data does not corrupt the prediction model i.e. for each table and outcome 

prediction the observation data should only contain the events of interest that were measured. Predicting the yield 

outcome in a non-closed-loop manufacturing process can be achieved by visualizing the historical data pattern generated 

from the inspection machine, transforming the data pattern and mapping it into Machine Learning Algorithm for training, 

in order to automatically generate a prediction model without the visual interpretation needs to be done by human. This 

has been successfully implemented with Kaizen repeat inspection, malfunction, and defect population detection in 100 

mm Wafer Probe, Tune-in and Blocking foundry event pattern visualization to identify pattern root causes in 12” Wafer 

Probe-Tune in and other Similar Test, IC device failure interpretation with scoring pattern and residual impact trajectory 

visualization in IC Sampling Test for Wafer Sort quality analysis and prediction.  
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The original per-run depictive pattern generated per inspection machine is then newly employed to directly visualize the 

trouble area trajectory pattern, thus all subsequent operation stage data can only show the trouble area without noisy non 

related data. This would become an improved Machine Learning Model visualization pattern input data, yet challenging 

because it compares to the original visualized pattern, the number of rows and class types of this newly visualized data 

is highly unbalanced. Data sampling needs to be performed, but the reliable destructed sampling techniques are not yet 

available. Consequently, it requires a new sampling technique to suit the newly transformed visualized pattern data and 

highly skewed data situation [4]. The skewness of yield data is manifested by previous studies using the ratio of the 

number of photographs of in spec and out spec devices. Such data imbalance poses a greater challenge for ML learning 

processes. Applying a common ML algorithm with standard settings on imbalanced datasets resulted in biased predictions 

and poor performance on out spec devices. The yield prediction of a semiconductor test is a highly skewed data case. 

Companies try to minimize costs and maximize profit by producing the highest possible number of in spec devices. Only 

a very small number of out spec devices are created for further test and failure reports. In previous studies, the yield was 

depicted with a 1:1 ratio. The outcome for each wafer run prediction is depicted as a blue dot state in the Yield State Vis, 

representing in spec or good devices, while the pink state represents out spec or fail devices. 

 

9.3. F1 Score 

The F1 Score measures the model’s accuracy of positive predictions, it takes both precision and recall of the model into 

account. Overtime the joint detection of both good and bad yield classes will be significant, thus F1 score is chosen as 

the evaluation measure. The solid curves denote results on the synthetic dataset (with unbalanced classes), while the dash 

curves correspond to result on the balanced dataset. First, it can be seen the F1 score drop sharply when using the 

independent limited training dataset (less than 500 records). The proposed method is the best choice among heuristic 

methods. The best thresholding criterion is found at the very early stage of training (less than 300 records) of the 

multivariate outlier detector, which indicates the smart manufacturing system is unstable and it is difficult to detect yield 

relevant fault patterns under such condition. Therefore, it is better to first build robust models for process monitoring and 

control under uncontrollable variation to stabilize the system. After that, yield prediction models can be built right away 

since tragic yield faults can be easy detected given a stabilized manufacturing system. The method is less efficient on 

finding yield predictive features from a limited amount of data comparing with statistical based thresholding criteria, but 

has great efficiency on training dataset shrinkage, prediction speedup and interpretability which satisfy the requirement 

for online machine learning. 

 

It can be seen as the amount of training data grows, the gap between the simulation and practical results narrows down 

first but then they diverged for the simulations settle down to some extreme points once the number of simulated records 

grows over 20,000. Heavy tail distribution is inherent in semiconductor fabrication process, where a few monitors records 

a significant portion of total variability. On the contrary, localized covariate shifts exist in real industrial processes, where 

the majority of observed process conditions vary in a significantly narrow range which may lead to poor performance of 

monitoring models. Localized data slices are constructed with respect to the temperature of furnaces that maintain a 

relatively stable working conditions to compare the monitoring performance. 

 

X.      CASE STUDIES IN YIELD PREDICTION 

 

This section highlights two case studies of data analytics-driven approaches to yield prediction. Their purposes include 

explaining how predictive models can be developed by using deep learning and feature engineering, as well as 

demonstrating the hands-on skill of conducting yield prediction tasks using data analytics tools. All the analysis is carried 

out in a chosen software platform with no need for deep programming skills.   

 

 
Fig: Crop yield prediction in agriculture 
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The first case study illustrates how predictive models can be developed using historical yield data from a semiconductor 

fabrication plant (Fab). The task is to predict the yield count of each wafer in the fabrication process. Three types of 

predictive models are studied, including artificial neural networks (ANN), generalized linear models (GLM), and support 

vector regression (SVR). It is found that the ANN model substantially outperforms the other two models. The predictive 

capability of each model is further assessed based on the test dataset [1]. 

 

The second case study focuses on deriving the predictive feature set and the predictive model using historical process 

data from semiconductor stepper equipment. The project involves more than 50 variables from different sources, such as 

stepper equipment, process files, and inspection results. Among them, features such as exposure field control, focus 

control, stage control, offset control, on-block wafer number, and defect count after first exposure are found to contain 

significant predictive capability for yield loss prediction problems. Five data analytics tools are studied at length in terms 

of general information, user interface, and use cases. Each tool reveals different insights regarding yield loss issues, but 

all of them show great potential for large-scale applications in semiconductor fabrication which contains billions of 

records and complexities every day. 

 

10.1. Case Study 1: Process Optimization 

As the processes become more advanced, the yield concerns both increase and become more difficult to optimize. The 

assembly and test yield comprises an array of complex process steps and product characteristics. To effectively improve 

yield, it is essential to analyze and prioritize these dependent process steps. Many process steps tend to have a tightening 

shift across different parts of the current data age. Furthermore, the fixing timeline could be limited due to tight coloring 

or ramp closure due to customer requirements. Therefore, it is important to not only detect but also analyze the problem 

prior to an attempt for fixing. 

 

Enhance yield has become a pivotal lever to reduce costs and boost financial returns. Yield enhancement is one of the 

most vital concerns in the semiconductor front-end process. To tackle this issue, machine learning (ML) has been 

increasingly applied to augment a wide variety of yienhancement strategies, including analyzing critical process steps by 

feature selection, assisting in troubleshooting and process optimization by data mining, detecting the potential cause of 

anomalies by clustering algorithms, automatic defect classification, etc. 

 

Despite the inherent contextual differences across those ML techniques, they share a common concept: constructing 

predictive models based on historical data and model-agnostic analysis tasks to identify feasible actions to either improve 

yield or prevent yield issues. To enhance the yield of an advanced semiconductor product, it is common to seek for 

methods to effectively analyze and prioritize the dependent yield concerns. A statistical method is proposed to examine 

the characteristics as well as the dependency structure of the initial and final product characteristics. Furthermore, a 

model-agnostic method is also proposed to assess the criticality of the process steps implied by the product characteristics 

via quantifying their global impact on the yield variability. 

 

10.2. Case Study 2: Defect Detection 

Defect detection is a key technology for semiconductor fabrication that provides critical data for both production 

efficiency analysis and yield enhancement. Semiconductor manufacturing defect detection uses a variety of data streams, 

such as optical images, infrared images, process variability logs, and particle measurement logs. However, in addition to 

these conventional data sets, more and more new data types arise, such as wafer-level power maps and images. These 

characterizations are promising for achieving fault-level defect detection, but there are urgent needs to conduct thorough 

investigations on how to develop the best model for new data types and how to combine examples of different kinds of 

data to provide a better detection performance. This section discusses both of these important topics by formulating them 

under a framework of advances in transfer learning (TL). The development of this TL framework can shed light on 

exploring interactively anomalies from images to signals and vice versa [1]. 

 

A semiconductor defects detection system is proposed that consists of a new conditional GAN-based model combined 

separately trained semantic segmentation and domain adversarial networks. With the embedding construction that 

contains foreground, background, and non-pattern areas for different application phases, illustration using TL for domain-

aware defect detection considering the uniqueness of different data types is described. The architecture of current defects 

detection system consists of stages from data collection to analysis results. Semiconductor defects presence can be 

detected by embodied transformation from images to signals through an end-to-end framework. This current development 

explores how snippets in need can be intelligently suggested by searching in time-frequency and domains at various 

levels. The proposed methods advance analytics for exploring manufacturers’ product stories in wafer-level maps 

leveraging the uniqueness of Wafer-Level Maps.  
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Within a wafer, yields are generally higher for devices within a die group than in the surroundings which may be attributed 

to cluster effects. The research investigates the combination of assimilation mechanisms for addressing challenges from 

large-dimensional and scattered feature values. The outputs from different mechanisms can be plugged into XGBoost 

facilitating performing analyses of production yield and die assembly  

 

XI.      CHALLENGES IN YIELD PREDICTION 

 

For semiconductor manufacturing, yield has been widely adopted as a key performance index and criterion to determine 

the success of the fabrication of integrated circuit (IC) chips. Yield is defined as the ratio of the number of good wafers 

and dies over the total number of wafers and dies processed by the front-end-of-line and thereafter back-end-of-line 

manufacturing processes, respectively. Die yield is determined by wafer yield and die manufacturing yield. Wafer yield 

is usually defined as the percentage of good wafers after various processing steps, and die yield refers to the percentage 

of good dice after the wafer is diced. Wafer yield and die yield are the most important metrics to determine the efficiency 

of wafer fabrication plants (WFPs) and assembly and test factories (ATFs), respectively [1]. In semiconductor 

manufacturing, it is widely accepted that data-driven approaches are a powerful and effective means in the smart 

manufacturing revolution for the enhancement of various key performance indicators (KPIs), such as yield. 

 

Nonetheless, yield prediction is a challenging task in the semiconductor manufacturing industry. First, the data are usually 

large in scale. Such large-scale data contain huge amounts of information while making it challenging to effectively 

analyze them by various means of data-driven approaches. Importantly, large-scale data make it costly and time-

consuming to search a hyperparameter combination that can lead to an optimal or near-optimal forecast performance. In 

addition, data drift is a common occurrence due to environmental changes. Data drift phenomena can significantly 

deteriorate the model forecast performance. In yield-driven strategy, the expected profits associated with the yield 

prediction uncertainties must also be considered. The yield prediction model (YPM) may hence be expected to output 

not just a single yield forecast but also a quantification of the prediction uncertainty in terms of yield percentile bounds, 

which is an even more challenging task. 

 

11.1. Data Quality Issues 

The huge amount of data collected from the semiconductor manufacturing sentry over equipment, data acquisition, 

control, process monitoring, and defect inspection can provide a large variety of insights into the manufacturing process 

and product quality. However, there are always some potential issues in data quality which could lead to misleading or 

wrong inferences. In the semiconductor process where several equipment vendors and different locations are involved, 

the full understanding of collected data may require additional engineering and business expertise. In this chapter, some 

common data issues are introduced and discussed. These issues include unmeasured variables, missing data, data 

preprocessing and calibration, and embedding human expertise. Novel and accurate methods and algorithms that alleviate 

the effects of these issues in order to enhance the data quality of wafer-level inferences are developed. 

 

Figure 11.1 provides a schematic of potential challenges to the accuracy and reliability of algorithmic data mining. Before 

deploying any data-driven model that is assumed to be understandable and verifiable, key aspects regarding the quality 

and characteristics of the available data must first be studied. Although the data used to train and apply the model can be 

examined, modeling assumptions along with software implementation can be erroneous or incomplete. Each of these 

categories is further discussed and illustrated with examples. 

 

Most of the data analysis works for yield prediction in semiconductor manufacturing report history data used and mining 

approaches, but the original data collection process is absent. This is because the semiconductor process involves various 

equipment from different vendors and implementations, and the acquired data are in an unstructured way. In order to 

mine historical data, segmentation and mapping of the data need to be performed. Otherwise, mining tools will not be 

able to process such raw data. Similar to financial data time series analysis, shape matching and pattern definition for 

discrete real and intersampled data need to be defined first before matching at any time series instance. To the best 

understanding, there is no work in yield prediction modeling for capturing data in structure, decomposing data into 

segments, tracking, grouping, and pattern comparison. 

 

Data quality is a crucial aspect in the application of algorithmic data mining to real-world manufacturing. Specific data 

issues that can influence robustness and performance are outlined. There are many questions and challenges about data 

quality perseverance in the semiconductor manufacturing process. Essential topics and representative work addressing 

these issues are presented. 
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11.2. Model Overfitting 

While applying any machine learning algorithm or predicting model in real life, the feedback time of machine learning 

model or predicting model to produce the predictive result is an important aspect. If the feedback time required to produce 

the predictive result is too high, then the predictive model may not be useful for the end users. For the designed yield 

prediction model using machine learning, the feedback time to produce the prediction result is highly dependent on the 

number of data points in the dataset, number of features in the dataset and the type of machine learning algorithm used 

for modeling. In order to shorten the feedback time, several experiments were proposed and run in chapter 5, after that 

an acceptably short feedback time was achieved while retaining the prediction model’s predictive performance. In yield 

prediction, the classification error not only impacts the overall yield but also affects the net profit. For yield prediction, 

while designing the predictive model using machine learning, care must be taken not to overfit the model on the training 

dataset as there will be penalty costs if too many misclassifications take place. Therefore, in the yield prediction model 

design, the model’s overfitting detection and avoidance has been conducted, and acceptable model robustness and 

generalization capability performance have been achieved for the applied yield prediction model. 

 

Eqn 1: Basic Overfitting Equation Form 

  
 

In the above section, through a simulation dataset, an explanation of how a predictive model could be overfit successfully 

and how to avoid it by using the cross validation method has been provided. Several statistical measurements of the cross 

validation overfitting detection method have been discussed. In the second experiment, several measures of the overfitting 

detection method were applied to the actual yield prediction model. It has been determined that out of all the statistical 

measures, the training sum of squared errors versus number of features graph could clearly show the overfitting 

occurrence point and has been used to detect yield prediction model overfitting. However, this measure only detects the 

overfitting occurrence point, and additional measurements should be used to avoid the detected overfitting. Therefore, in 

the future work, variety of techniques to avoid overfitting could be tried or developed and integrated into the yield 

prediction model building [1]. 

 

11.3. Integration of Data Sources 

The semiconductor manufacturing process and environment is a highly technology-driven and complex system consisting 

of large amount of machines, back-end and front-end manufacturing processes, data sources, etc. A manufacturing 

process could involve different steps or units with different equipment and materials in the form of a complex 

manufacturing system [1]. Given the complex manufacturing processes, numerous potential input parameters or factors 

(N) that might impact the performance are typically involved in manufacturing. However, in reality, only a small 

proportion of the input parameters (K ≪ N) are found to be critical or significant in determining the product performance 

or display a reasonably high correlation with the product performance. Therefore, it is fundamentally important, yet 

practically very challenging, to explore and identify the important input parameters or features affecting the 

semiconductor manufacturing performance in real-time. 

 

Data or data source is a fundamental and key element in data-centric intelligent vs. smart manufacturing. In 

semiconductor manufacturing, various data types of different frequency, value schema, etc., are acquired at different 

stages of the manufacturing process from various data sources including static local databases or storage, or via streaming 

or communication wirelessly from multiple sensors installed on machines or equipment in the form of IoT or in an online 

fashion. Identifying, integrating, preprocessing, and enriching data from heterogeneous data sources (including 

production, test, and inspection data), would provide a broader and deeper understanding of the manufacturing process 

and equipment status in a more comprehensive and bigger picture for intelligent vs. smart manufacturing such as yield, 

on-line performance prediction, optimization, decision-making, etc. 
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XII.     FUTURE TRENDS IN YIELD PREDICTION 

 

For address yield enhancement in semiconductor smart manufacturing, a data analytics-driven approach involving 

Explainable AutoML with adaptive modeling is proposed to deploy machine learning techniques. The proposed approach 

seeks to mitigate the complexities of developing machine learning models in smart manufacturing by automating the 

implementation of data analytics while maintaining a high level of transparency and interpretability. An Explainable 

AutoML approach with adaptive modeling is conceived to automatically deploy machine learning techniques for yield 

enhancement purposes and provide transparent insights. The Explainable AutoML system integrates the AutoML and 

Explainable AI components with a complexity-adaptive modeling capability to match the problem complexity of different 

fabrication facilities and yield improvement scenarios. 

 

Eqn 2 : AI-Driven Hybrid Models 

 

   
 

A proof-of-concept Explainable AutoML prototype is developed with its architecture and workflow. The completion of 

an industrial use case study demonstrates the great potential of the Explainable AutoML approach to facilitate the 

adoption of data-driven analytics in smart manufacturing. The Explainable AutoML approach holds significant promise 

in enhancing the efficiency and effectiveness of product yield improvement and profitability margin increase in smart 

manufacturing, with substantial social impact. Much of the great benefit can be achieved by incorporating the proposed 

approach in the smart manufacturing framework of other complex manufacturing industries, including aircraft, 

transformers, integrated circuits, containers, ships, etc. Mathematical modeling, simulation, and other machine learning 

techniques, such as reinforcement learning, anomaly detection, and outlier classification, can also be adopted in the 

proposed approach to adapt it to various domains. 

 

Semiconductor smart manufacturing opens new avenues for integrating advanced technologies, driving research 

worldwide. A technological research gap is identified in closing the promising data-driven analysis techniques and 

algorithms with the impediment of excessive domain and technical knowledge requirement for implementation. To 

enable wider adoption of advanced data analytics, the complexity-adaptive Explainable AutoML approach is proposed 

to take over the development and deployment of data-driven models by seeking automatic solutions. Its great impact in 

the smart manufacturing domain is highlighted by focusing on a specific implementation to enhance product yield with 

low defectivity, which is one of the most vital priorities across industries, especially in semiconductor manufacturing. 

 

12.1. AI and Automation 

The semiconductor industry is continuously evolving, and with that evolution comes both new challenges and new 

opportunities for improvement. While there have been many advancement opportunities identified in integrated circuits, 

there has yet to be an opportunity for integrated circuit improvement identification in the manufacturing realm. However, 

sourcing current manufacturing processes such as critical features, lithography settings, target films, and slit width has 

generated insight into improvement opportunities [1]. Additionally, current manufacturing defects in concurrence to these 

opportunities can be identified and sourced by analyzing the results of Statistical Process Control charts. Using this data, 

deep learning models can be applied to detect which current defects are most frequent or how defects manifest over time. 

Once these defects have been identified, data mining techniques can be used to analyze the results. If there are moderate 

results after analyzing current defects, process variance analysis is recommended. 

 

The background and definition of defects were provided. However, there needs to be a description of how the data is 

formulated before analyzing it. Parameters such as defect shape, defect type, defect area, defect magnification, and 

manufacturing processes require a deep learning model that can detect the defect type of interest. The VLSI fabrication 

process development consists of multiple processing steps that fabricate semiconductor chips. It uses photomasks to 

transfer the desired design to wafers, however there are limits in terms of the printing fidelity of such features [9]. The 

yield learning framework estimates the 50% non-defective yield of a design as sample wafer maps are obtained over 

time. For defect propagation prediction, Monte-Carlo sampling is needed to sample potential defect candidates not 

declared by the layout rules.  
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Given a set of test failures, the quality analysis engine generates a quality report to help the experts in determining the 

most efficient logic diagnosis solution. Among numerous solutions, efficiency based on defect coverage and engineering 

resources is considered. Constrained integer programming is applied to find the solution. In production data analytics, 

one of the challenges faced today is to leverage entire data from legacy patterns or new data such that quality issue 

detection schemes can be derived in real-time and without expert involvement. To address the challenge, a Bayesian 

framework accommodating both pattern level and signal level similarities with hidden factors such as background noise 

and structural variability is proposed. 

 

12.2. Real-Time Analytics 

The semiconductor industry is a rapidly evolving and fast-growing market. Yield, the ratio of the number of good dies to 

the number of total dies in a wafer manufacturing process, is an important measure of finished products containing 

functional chips. It is vital for semiconductor manufacturers because of its direct consequence on cost efficiency and 

market competitiveness. Due to the high fixed costs of building a fabrication unit (fab), to maintain profit margins and 

long-term growth, enhancing yield has become a crucial lever to cut down costs and increase profits by tightening design 

and process margins, removing sources of yield loss, and eliminating the impacts of variations on yield. In an advanced 

logic wafer fabrication facility (fab), a 1% increase in yield corresponds to about-dollar 150 million net profit increase in 

a fab with a monthly revenue of about dollar 120 million [1]. This is primarily due to the exponential nature of yield loss 

versus the process defect density according to the “yield learning curve” style of models. 

 

Eqn 3 :  Real-Time Analytics Equation: General Form 

 

 
 

To gain insights into the manufacturing yield and explore opportunities to improve yield, data analytics-driven 

approaches have been widely applied in semiconductor manufacturing. Over the past two decades, vast amounts of 

manufacturing data from production equipment, material handling equipment, and metrology have been accumulated. 

The vast amount of the data has motivated the application of statistical and machine-learning (ML) models on wafer, lot, 

process, equipment, sensor, and inspection levels. Applying statistical methods, including logistic regression, linear 

regression, multivariate analysis, partitioned based regression, and historical BIN prediction methods to yield-related 

data have been widely studied [2]. These statistical methods have many advantages, including interpretability, robustness, 

and easy implementation. However, traditional modeling approaches require extensive expertise in terms of methods, 

implementation, and data management, which becomes a barrier to the rapid integration of data analytics and fine-tuning 

of models to planter changes in semiconductor smart manufacturing. 

 

As ML technologies advance in performance and efficiency, consideration has been given to applications of various ML 

techniques in yield analysis. To name a few similar attempts to boost yield, feature selection methods, including 

embedding, wrapper, and filtering approaches, to find critical process steps driving the wafer yield are proposed. Further 

data analytics approaches using popular ML techniques such as K-means clustering, clustering algorithms, and random 

forests to troubleshoot root causes for the outlier wafer yield have been studied. Throughout the path from “data-to-

insight-to-impact,” statistical and ML techniques have considerable potential to address and mitigate yield issues in the 

semiconductor manufacturing domain. 

 

XIII.      CONCLUSION 

 

Yield prediction is a challenging research domain in semiconductor manufacturing, with the rapid advancement of 

technology nodes and heterogeneous device integration. As advanced technology nodes shrink, feature design complexity 

and process step quantity increase, making manufacturing more challenging. These factors, combined with the 

requirements to improve yield and shorten time to market, result in increased interest in advanced statistical modeling, 

machine learning (ML), and deep learning (DL) approaches for yield prediction [1]. This study provides a comprehensive 

summary of current research on yield prediction approaches in semiconductor manufacturing and aims to assist 

researchers in orienting themselves in this dynamic research area. Key insights of existing yield prediction approaches 

are analyzed from a data-driven perspective, followed by theoretical insights and future work directions.  
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Several future directions for potential works are offered, including scrutinizing the combination of powerful feature 

extraction algorithms with new ML and DL models, mini/maxi modeling considering feature interactions, more spatial 

yield prediction and related works leveraging the recent achievements in graphs, developing an efficient approach to 

accommodate nonuniform process variations, and exploring robustness enhancement and explainability investigation on 

ML/DL models. The attempts outlined above are expected to advance approaches for yield prediction in semiconductor 

manufacturing, promote collaborative research between the semiconductor industry and academia, and further benefit 

related communities where research is still in its infancy. In the wake of the new AI paradigm, advancing yield prediction 

approaches with data analytics-based techniques to facilitate yield gap closure in semiconductor manufacturing has 

become an emerging demand. 
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