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Abstract: Agriculture plays a significant role in the global economy, and there has been a trend in industrializing 

agriculture machinery and equipment. This paper proposes a framework that integrates data engineering and machine 

learning for the predictive maintenance of smart agriculture machinery. This framework is built upon existing state-of-

the-art solutions, concepts, and techniques for data engineering and machine learning, along with the innovations of new 

solutions. This paper highlights the major elements of the collaboration. Challenges, societal impact, and future works 

are further discussed. 

The agriculture sector is a key contributor to the global economy, with an estimated total value of more than 3 trillion 

dollars per year and corresponding employment of over 1 billion people worldwide. The rapid growth of population 

increases the demand for basic agricultural supplies. In the era of IoT, pollution prevention, and food safety assurance, 

agriculture has also been trending towards intelligence, automation, and standardization. There has been a trend in 

industrializing agriculture machinery and equipment, where a wide range of data sources from working conditions are 

equipped on agricultural machinery. These data sources may include 1D, 2D, 3D, and 4D data from cameras, LIDARs, 

radars, and sensor networks. These data sources by design have the potential of being a bridge to connect agriculture and 

smart city. However, the wide-scale deployments of data-driven smart agriculture have been hindered by the challenge 

of data engineering for the large-scale, heterogeneous, and sparsely-distributed agriculture data, and insufficient 

integration of data exploitation and exploration technologies including machine learning for deep analysis, insight 

mining, and knowledge discovery of agriculture data. 

Moreover, a variety of application scenarios in smart agriculture have appeared in recent years, including but not limited 

to predictive maintenance of agriculture machinery, soil monitoring with sensor networks, and enviromonitoring with 

remote sensing data for crop estimation. The laboratory research has made promising achievements in devising precise 

models with techniques from data analytics, machine learning, artificial intelligence, computer vision, and other similar 

fields. However, these achievements are hardly used in practice because of integration challenges. Integrating data 

engineering and machine learning for the collaborative, collaborative-wise, and process-wise predictive maintenance of 

smart agriculture machinery is yet to be studied comprehensively and in-depth. 

Keywords: Predictive Maintenance,Smart Agriculture,Machine Learning,Data Engineering,IoT Sensors,Time Series 

Analysis,Remote Monitoring,Failure Prediction,Remaining Useful Life (RUL),Condition-Based Maintenance,Edge 

Computing,Big Data Analytics,Sensor Fusion,Agricultural Machinery,Maintenance Optimization.

1. INTRODUCTION 

As the world enters a new era of economic competition, the adoption of advanced technological solutions as a means for 

the improvement of agricultural productivity and sustainability, among others, is accelerating. However, in the case of 

direct agricultural machines, such as soil tillage, seeding, fertilization, and plant protection, there is no relevant 

commercial technology and little research exists, despite the fact that such machines are multi-million euro investments 

per unit. In this context, the integration of advanced computational devices, such as data-logger, mesh network, IoT 

devices, and edge/yards, is converted into a Smart Farm IoT Architectures. Modern data collection technologies promote 

equipment Condition Monitoring and new opportunities for data management. Modern data engineering technologies are 

leveraged in cloud solutions, reducing the SMEs investments and maintenance of dedicated infrastructures providing the 

necessary tools for Data Storage and Processing. Edge computing devices mitigate the data-delivery bottlenecks of cloud 

architectures while safeguarding processing in case of intermittent Internet connections, not all data need to be delivered, 

and privacy concerns. The whole of the aforementioned technologies is complemented by Machine Learning technologies 

mostly aimed at Real Time Predictive Maintenance and their application to agricultural machinery. Conditions such as 

https://ijireeice.com/


ISSN (O) 2321-2004, ISSN (P) 2321-5526 

  

 

IJIREEICE 

International Journal of Innovative Research in 
Electrical, Electronics, Instrumentation and Control Engineering 

Vol. 9, Issue 12, December 2021 

DOI:  10.17148/IJIREEICE.2021.91215 

© IJIREEICE              This work is licensed under a Creative Commons Attribution 4.0 International License               89 

the malfunctioning of a component are considered. At this failure mode, maintenance schedules are shown to be 

unnecessary and are thus skipped. Future work will focus on abnormal conditions resulting in a lower tractability of the 

driller, or issues with undue clogging of seed. The deliverable is thus expected to be for a specific sensor type, a collection 

of pre-processing pipelines or data restructuring procedures producing an enriched timeseries scoping on the final use-

case. Hence, for agricultural data analytics, these latter complications specifically require the design of a Data 

Engineering workflow, affected by raw data variability on both modelling and real-world terms of applicability (e.g. 

sensor noise, data dropouts, fuzzy input values). In line with these considerations, Machine Learning technologies are 

expected to be robust to noise. However, robust generalization is not necessarily achieved with expressive model families 

operating on raw input. 

 
 

Fig 1: Machine Learning and Data Engineering for Predictive Maintenance in Smart Agricultural Machinery. 

 

1.1. Bridging AI and Agriculture: A New Era of Predictive Maintenance in Smart Machinery                          In 

recent years, a revolution has begun to unfold in cultures around the world and it appears poised to change profoundly 

the agriculture industry. Technology has advanced to remarkable levels, computers, machine data-central engineering, 

data science, sensors, smart phones, robots, drones, and smart machinery cannot be overwhelming. Surplus labor of rural 

areas, dense population of urban area and starvation for food of a growing population in mid developing countries turns 

research attention to agri-robotics. This is a focus on a class of smart machineries capable of using smart agriculture. The 

ultimate goal is to develop self-operate machines capable of planting, growing, nurturing, and harvesting crops all on 

their own. These machines will be steered by artificial intelligence (AI). Fallible data will be collected on board by 

sensors for learning purposes on cultivation, nutrition, harvesting, weed and pest controlling, environmental or weather 

influence. It is then uploaded to the cloud server for consideration by compositing, analysing, studying, and learning. 

Precedent will develop an AI technology executed on-board for smart agriculture by the intelligent machines or it will 

relay results to the smart machines for actions. The smart machineries with smart soft wares are capable of autonomously 

performing data driven precision farming on lush crops and fruit trees. Along with such revolutionary research, there has 

been a recognized shift of understanding about preciseness in agriculture: agriculture engineering cannot only apply 

engineering principles and technology of manufacturing to improving agriculture technologies, but also innovate 

machines with mechanics and smart control develop opto-electronics, sensorics, computer science, and 3D printing. 

These can also include AI and remotely operated machines like drones or mobile robots that are not yet commercially 

viable. A combination of these categories of machines leads to independent autonomous alternate agri-robotics. 

Ultimately, these machines could fully autonomously and steered by AI based software and no need for human supervisor, 

maintenance and control. These can be simple machines like Mueller robots for weeding. 

 

2. BACKGROUND 

This section presents a tutorial on integrating machine learning and data engineering, using time-series predictive 

maintenance as an example. The tutorial is organized into two parts. The first part discusses the workflow of time-series 

data engineering, covering data collection, transformation, and storage using cloud-based warehousing, lake houses, and 

open-source technologies. The second part discusses time-series predictive maintenance models, including pre built and 

custom models using popular ML and DL frameworks and time-series feature engineering and forecasting techniques. 

Integrating data engineering and machine learning tools enables end-to-end data processing and predictive analytics 

pipelines to be implemented in the cloud. 
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There is a growing interest in integrating machine learning and data engineering as a crucial component of data-driven 

systems. Successful machine learning projects require sound data engineering to ensure high-quality, timely data for ML 

algorithms. Integrating ML and data engineering allows continuous monitoring of changing conditions and the retraining 

of models as new training data becomes available. Additionally, it reduces the total cost of ownership. Most widely used 

processing engines have home-grown tools that specialize in specific workflows. For example, the DataRobot and H2O.ai 

cloud platforms democratized machine learning by including the most commonly used package in the box. However, 

they are not a panacea for end-to-end data pipeline automation. The state of the art can either serve as prebuilt monitoring 

tools or building blocks for constructing them. 

Several case studies and research works discuss deploying forecasting models in cloud platforms or using low-code or 

no-code tools for training machine learning models. However, typical tools either focus exclusively on predictive 

maintenance or cover only a sub-topic, such as time-series feature engineering or simple deployment and data engineering 

tools. To the best of the authors’ knowledge, no effort has been made to cover both time-series data engineering and 

predictive maintenance. 

2.1. Overview of Smart Agricultural Machinery                

Precision Agriculture (PA) or Smart Farming is a systematic approach utilizing state-of-the-art IoT systems to optimize 

the efficiency of growing and harvesting crops while conserving resources. Through advanced data collection and 

analysis techniques, the production of crops is significantly improved. Smart agricultural machinery is at the forefront of 

this change. These smart systems utilize sensors, cameras, and radars to collect data from the environment, which is 

processed and analyzed to direct the behavior of farmers and agricultural machinery. Predictive maintenance is a crucial 

component of smart agricultural machinery and is thus of paramount importance. A farm with a malfunctioning machine 

can lose vast quantities of crops. It is key to apply the right data engineering and ML models to improve reliability and 

accuracy. 

The significant increase in the social demand for crops has led to the increased adoption of precision agriculture by 

farmers and experts, and subsequently, millions of intelligent sensors are being utilized to gather data ranging from crop 

growth to machinery wear state. This results in the generation of Terabytes of data every day, referred to as "Big Data". 

However, at the moment, this data is mostly not being utilized at all within the farms and companies. In fact, no data 

science operation is taking place in most farming operations and procedures. Thus, taking on the challenge to develop a 

smart product - targeting both agricultural companies and individual farmers - to improve their efficiency in terms of 

crop yield and to assist in preventive maintenance on the machinery is a rather challenging yet promising product. 

Smart agricultural machinery is a vehicle consisting of numerous electronic equipment that is designed to operate on 

fields, such as tractors, harvesters, seeders, etc. The machinery usually features a variety of sensors and controllers and 

is referred to in its entirety as an embedded system consisting of multiple parts that remotely communicate enabling smart 

operation with minimal human assistance. In smart agriculture, the machinery senses the conditions of the field to 

autonomously plan and carry out machine events. To do that, it receives data from the different sensors on the vehicle 

that are attached to different components of the farm and soil environment. Data is ingested from the opening and closing 

of hydraulic valves, state of the engine housing, electronic clutch state, etc. Analyses are performed over the data collected 

from these sources, during which statistics are created on how often each sensor communicates and what is the type of 

signal produced. The data can then be transformed into useful insights creating a better picture of the conditions of the 

field and state of wear of the components of the farm machinery. 

Equ 1: Feature Aggregation Pipeline. 

 
2.2. Importance of Predictive Maintenance                      

Unplanned failure of mission-critical equipment undermines production, and any prolonged downtime results in 

significant monetary loss. Incremental downtime is thus perennially a growing concern in industries with revenue 

generating assets such as High-End Servers, Oil Rigs, Wind Turbines or even Nation-Wide Railway Networks. However, 

unplanned equipment downtime involves not only the risk of loss in potential revenue, but also by-product risks that pose 

further implications on the performance and safety of other equipment and processes. On the other hand, monitoring and 
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gathering of asset usage and condition data through the strategic deployment of sensors and networks have become an 

increasingly ubiquitous state of affairs in modern industries. Consequently, vast amounts of collected data from such 

monitoring systems dubbed the data deluge have become available. Therefore, there arises a critical business need to 

derive actionable insights from the data for intelligence in mitigating downtime risks and ensuring optimal performance 

and safe operation of equipment. Such forethought has yielded a new paradigm for Engineering Asset Management 

termed Predictive Maintenance (PM) originating from Maintenance Engineering. It combines disciplines such as data 

science, business intelligence, statistics, reliability engineering, and maintenance engineering to manage the uncertainty 

in event-based maintenance decision making from multiple perspectives. This paper focuses only on equipment-failure 

based predictive maintenance. 

However, acquisition of such a large amount of data poses a slew of fundamental challenges in managing and 

coordinating the data deluge. Traditional data analytic approaches that rely on domain experts or rules-based conditions 

become unwieldy as data analytics move from on-dimensional results towards multi-dimensional analysis. Existing 

machine-learning based predictive models gaining attention due to the promise for timely equipment condition 

predictions becomes inadequate as it relies on configuring a model architecture and optimal hyperparameters manually. 

Another dilemma for predictive maintenance applications in practice is the Ask Vs Access divide where sensitive 

business queries sought by decision makers remain unaddressed and out-of-reach due to the sheer size, scope and 

unstructured nature of the acquired data. Worst still, a one-size-fit-all approach commonly adopted in many predictive 

maintenance efforts to be queried in the same manner not only substantially deviates from the business semantics for 

maintenance decision making but also is likely to overlook important finer-grained queries. Such challenges emphasize 

the need for understanding why the existing PM efforts failed to generate actionable data driven insights and relevant 

lessons. 

2.3. Current Trends in Machine Learning                              

The continuous remarkable growth of the ‘internet of things’ has induced device interconnectedness and the generation 

of unparalleled quantities of data in the last decade. The ‘data economy’ has continually gained traction, as an established 

winner in the IoT landscape, offering essential opportunities for various industries and business sectors as well as the 

launch of completely new ones. Businesses are investing heavily in big data collection, storage, and processing 

frameworks and algorithms, incentivized by the firm’s wide-ranging collection of benefits. In particular, clean, 

contextualized, and ideally real-time data revelation is defined as a prerequisite prior to the exploits of innumerable 

opportunities afforded by either ‘data-driven’ analytics to continuously enhance operation and performance or 

‘machine/deep learning’-driven predictive insights on machine intelligence. However, the value gained from those 

systems in harvesting the major investment return is dependent on how compressively and effectively are the data 

collected, contextualized, mined, represented, and rendered to business insights. While the involved technologies or 

algorithms are constantly developed and currently form well-established strengthening capabilities, the fabrication of 

coherent and proficient architecture embracing the aforementioned areas of competence is at its infancy promotion stage, 

especially at a reasonable operating cost. 

Predictive maintenance applications have recently gained increased attention in the IoT domain, where, as a form of 

condition-based maintenance (CBM), their remark capabilities can contribute to notable business cap rates, return of 

investment, and competitive advantages. Despite the demonstrated lower costs and chances than conventional failure-

based or scheduled maintenance approaches, the adoption rates of modern predictive maintenance schemes are still 

currently limited in practice. Their viability and cost efficiency have not been established across the manufacturing and 

service industries, with the monitoring, planning, and mitigation activities being largely conducted offline or mixed with 

conventional methods. Novel processing frameworks and methods are required to materialize the incorporation of 

machine learning capabilities directly in the day-to-day operation of the assets so that moderate implementations costs 

and training times are guaranteed. The huge vocabulary of asset-related elements, modes, and attributes that each system 

possesses renders the formation of broadly universal processing architectures highly improbable. Therefore, novel 

iterative resources arrangement and task abstraction techniques are needed to adopt the development of relative 

processing solutions to the industry’s state-of-the-art. 

2.4. Role of Data Engineering                                                        

To answer the questions in the introduction, it is essential to gather all relevant information and data, such as failure 

history (if applicable), logs from machines and devices, configuration files, and the structure of databases and data 

streams. The following: 

- The gathered data can be categorized into types such as time series, flat tables, texts, and images. 
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- Data quality is examined in terms of absence, completeness, duplication, accuracy, currency, and integrity. 

- Automating the estimation of data quality metrics requires checks, filters, and cautionary measures. 

- Since data quality is an abstract concept, it is represented with multiple metrics. 

- Data quality analysis needs to integrate all available results into a global evaluation score. 

In the end, data pipelines retrieve the data and perform quality assessment procedures. This process can be either custom-

built or based on ready-made solutions. Since the proposed platform supports PANDA Data Quality, APIs can deliver 

processed data for data analytics and machine learning tasks if their capability satisfies the data quality requirements. 

Data marts are designed to hold data in a denormalized format suitable for bulk operations. They will store streaming 

data from machine repositories. Qualified streaming data is sent to data warehouses to be aggregated according to user-

defined intervals. Qualified data is also pushed to data stores supporting web applications, storing aggregated machine 

health data in a denormalized format. Thus, reporting and visualization can happen simultaneously with the arrival of the 

raw data, and machine operators can have access to real-time health data and visualize them in time frames of their 

choosing. use different methods for data storage. PanDA offers different choices among NoSQL databases and data 

warehouses for data exchange to satisfy various requirements. 

3. MACHINE LEARNING TECHNIQUES 

The requirement to innovate and reduce costs aligns with Industry 4.0 trends that prompt manufacturers to adopt new 

technologies in production processes and supply chains. For this context, predictive maintenance models take advantage 

of data and machine learning algorithms to overcome such downsides. Several instances detail engineering traditional 

manufacturing processes to lessen machine downtime. Yet, there is limited research in ancillary agricultural technologies 

closely tied to climate-neutral proposals. For the EU to become climate-neutral by 2050, farm equipment manufacturers 

must innovate to enhance the sustainability of their machines and production processes. 

Thus, the advent of smart agricultural machinery that is capable of making decisions and applying individual machine 

learning models to perform those decisions holds potential. However, such innovations incur increased mechanical 

complexity, leading to greater demands from systems for maintenance. To tackle this matter, new predictive maintenance 

systems based on machine learning are presented along with an architecture that poses challenges to event engineering 

and integration of data engineering and artificial intelligence. 

In the early 20th century, research found that modern predictive maintenance practices entail risk since machine learning 

techniques require incorporating the field of data engineering. This has vastly improved the applicability of machine 

learning models in numerous domains. However, predictive maintenance model integration efforts demand engineering 

both the complex systems that generate data as well as the machine learning models that infer knowledge from that data. 

Current predictive maintenance research in agriculture caters to only one side of that challenge, thus a novel approach is 

proposed. 

3.1. Supervised Learning                                                            

In supervised learning, the machine learning model is created based on a labeled dataset. Roughly speaking, a label is an 

answer to a prediction or classification task provided with the training set of the model. The general approach to 

supervised learning is to treat the previous labeled/answered data points as examples for building the prediction model 

by replicating the predictive function that was used to generate the labels. Since the true label is not available for working 

with a prediction model, a commonly used approach is to evaluate its performance with another independent sample. 

Evaluation metrics include accuracy, precision, and recall, which provide important quantifications of the quality of the 

predictions and capture different aspects of it. Essentially supervised learning proceeds in two steps: a training one, where 

a supervised learning algorithm learns a model from a training set consisting of data points with true labels, and a 

testing/evaluation one, where the model inferred from the training set is applied to an independent test set to assess its 

performance. 

In supervised learning, tasks and applications usually come with different names and descriptions, but the two-step 

procedure is nearly always the same. The first task of supervised learning is a learning process on data with a supervision 

signal. Generally, the goal of the learning task is to infer the characteristics of the underlying function mapping from the 
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input instance's space (feature space) to the output instance's space (target space) based on a certain set of observed input-

output pairs, also known as examples or training samples. In practice, supervised learning includes a learning mechanism 

and output decisions mechanism. Accordingly, there are usually two types of output of supervised learning as labels or 

numerical values forming prior conditions for subsequent data processing. 

 
 

Fig 2: Machine Learning in Predictive Maintenance. 

3.2. Unsupervised Learning                                                       

The presented study explores the use of unsupervised learning techniques for predictive maintenance. Results show that 

both approaches can correctly classify between healthy and damaged samples. However, the clustering approach is 

significantly faster with a preprocessing time of only 10 seconds. A cluster may contain multiple irregularities and only 

one clustering approach is required to analyze and classify data. In many industries, failures in electromechanical systems 

can lead to production losses, idle time, and higher maintenance costs. Early fault detection is essential to minimize these 

issues, and traditional methods are not available for high-dimensional data. Artificial intelligence (AI) techniques are an 

alternative for pattern recognition on a variety of data sources, including images, videos, and vibration signals. Predictive 

maintenance is application software development capable of monitoring electromechanical systems, detecting anomalies, 

and predicting failures using data from low-cost sensors. To assess the performance and predictability of machines, 

degradation analysis and supervised learning techniques require a large amount of labeled data, which can be expensive, 

time-consuming, and even unsafe to obtain. As a result, many industries prefer to use unsupervised learning techniques 

as a natural and effective approach to identify irregularities and assess whether a machine's condition is normal. 

Moreover, unsupervised learning classifiers are independent from machine health states, allowing them to adapt 

automatically after disturbances in the environment or system changes. 

Autoencoders and clustering are two of the most popular unsupervised learning techniques. An autoencoder is a deep-

learning approach based on a neural network that determines a compact representation of the input by forcing the output 

to be the same as the input signal. It may employ a convolutional architecture instead of a standard feedforward 

architecture. The compact representation inherits the dimensionality reduction properties of PCA. Moreover, clustering 

uses unsupervised learning techniques based on a set of n vectors in a domain of d dimensions that cluster independently 

for high-dimensional data and determines n observed and hidden variables that influence the formation of the ground 

truth clusters. Moreover, it reconstructs around K clusters at each iteration that merge together to model an unseen sample 

without re-training the entire model. Thus, clustering can be a natural approach for effective pattern identification after 

reducing the dimension of the signal data feature space with an autoencoder. Deep and compact clustering are combined 

to accurately detect irregularities and improve performance and efficiency. 

3.3. Reinforcement Learning                                                   

When dealing with long-term schedules, an estimated maintenance process must be generated in advance, and the time 

of maintenance must be reordered and repaired based on an emergency prediction system. The issue of intrusive 

reordering prevention must also be covered. Most existing Long Term Scheduler solutions do not cover the whole process 

comprehensively, and each step of the scheduling process, including scheduling, assignment, and transportation tracking, 

is designed as independent systems. Long Term Scheduler works by computing the best time to carry out maintenance 

based on both machine and crop conditions from the defined scheduled period. If the situation in the following processes 

enables urgent maintenance, data is forwarded to the Process Criticizer. The process rerouter changes the maintenance 

site of down or intruded machines based on machine remaining battery level and distance. 
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A Reinforcement Learning-based Process Criticizer receives several reports a minute from an Edge-based Processing 

Segment. Each report is based on either emergency prediction or maintenance completion information. Only reports with 

a certain degree of credence said by a long-term scheduling agent will be processed, as it is not time-efficient to compare 

too many reports in the constructive critic system. Based on the trained critic model, the process criticizer will choose 

one of many reports to re-evaluate. The critical model is periodically updated using regularly collected historical data. 

Maintenance completion re-evaluations are parameterized as binary classification tasks. Failure case data should be 

forwarded to the Logical Policy Generator if an urgent maintenance assignment is found. 

3.4. Deep Learning Applications                                       

Worldwide, extensive efforts are made to modernize agriculture through the use of advanced information and 

communication technologies. Precise and efficient high-throughput agriculture requires agriculture 4.0, or smart farming, 

which enables the continuous monitoring, measuring, and analysis of a myriad of various phenomena and aspects of 

complex agricultural ecosystems. Smart farming has recently received greater focus, interest and investment mainly due 

to high labour costs, stringent quality and safety standards, and low margins and efficiency in agri-food chains. The 

challenges of agricultural production include quantity, quality, nutrition, ecological footprint, environmental impact, food 

security, and sustainability, which need to be addressed in an integrated and orchestrated way. Agriculture, which is the 

basis of food production and food supply, is an important economic sector worldwide, comprising a quarter of the 

worldwide economy. Agriculture is by nature complex, multivariate, and unpredictable, posing a number of risks. 

Extensive inputs, such as land, water, arable area, fertiliser, pesticides, labour costs, and capital investments are required, 

posing a number of risks. Each crop and soil type has its own microclimate and pests, with unforeseeable weather events. 

Nevertheless, agriculture is one of the first sectors which adopted and implemented various technologies starting from 

the first applications of mechanised machinery. Research institutes and universities invest significant effort in developing, 

testing and adapting new technologies. 

Other hand, the use of computers and the Internet in agriculture, also referred to as e-agriculture, can significantly enhance 

the existing tasks of management and decision/policy making through context/situation/location awareness and might 

assist in better understanding the rather unpredictable agricultural ecosystems. In order to enhance management in 

agriculture, ICT needs to be used to continuously and accurately monitor, assess, manage, forecast, and remotely control 

various assets and processes in crops and farming. Correspondingly, the multitude of tasks in agriculture is data- and 

knowledge-intensive, which require appropriate models, standards, methods, algorithms and technologies. 

4. DATA ENGINEERING FRAMEWORK 

In the domain of predictive maintenance, the lack of standard data representation format or protocols has been reported 

to be one of the roadblocks for a more wide adoption of prognosis capabilities in multiple industries. In this regard, a 

framework offers a wide variety of services and a standardized data model. The proposed solution, preventive 

maintenance architecture in flexible manufacturing using the framework, addresses issues in predictive maintenance 

analytics. The architecture solution is proposed first, followed by prototype implementation and experiment results. After 

that, development, testing and endpoint details of a co-simulation prototype are described. After describing the 

implementation, runtime performance analysis and evaluation results are then presented. 

The framework provides various services for building smart applications, such as context data management; stream and 

complex event processing; analytics and graph; etc. These services obsensurate desktop applications for different 

domains. The proposed solution aims to provide a flexible and modular architecture using the framework. The flexibility 

is achieved by facilitating the integration of different components, each required for predictive maintenance. The 

proposed 4-layer approach supports better understanding of different components/processes at different levels as well as 

the overall architecture. Interoperability of different components as pluggable components can be easily integrated with 

the designed predictive maintenance solution. This feature will enable effective maintenance analytics with minimal 

effort. The adopted context broker along with the Big Data Analysis module facilitates interaction and integration of 

existing as well as future IoT devices within the production plant. The application of connector along with the proposed 

data model will facilitate greater interoperability and transparency of data access. It will facilitate virtual factory 

production mode, requiring a higher level of data integration from customers, suppliers and partners across enterprises, 

optimizing the information flow and delivery process. 
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Equ 2: Predictive Maintenance Model. 

 
4.1. Data Collection Methods                                            

Studies on predictive maintenance show that evaluating the usability for various industrial machines requires an extensive 

analysis of underlying data. Such exploration requires the extensive understanding of sensors, the data they generate and 

the means of processing that data. Furthermore, available datasets have to be analyzed in detail and the analytical tools 

have to be understood thoroughly. Since a number of IoT datasets from real-world usage of various industrial machines 

are publicly available, they are used for this purpose. 

To ensure that the selected machinery satisfies the operating conditions and allows for prediction properly, a detailed 

understanding of various mechanical components and their operating specifications is required. Moreover, finding the 

right level of details in which the prediction should be done is not trivial. The level of detail refers to what type of failure 

is of concern; is it failure in a bearing, in a gearbox, in a controller, in a motor or in any other driveline equipment? On 

the contrary, the level of details refers to the straight prediction of the time until complete failure in the whole machine. 

Automated diagnostic and prediction systems would therefore require time and performance data to determine the type 

of condition monitoring equipment. 

Time-series data from industrial machines has to be carefully considered, especially when estimating the remaining useful 

lifetime of engines or predicting the failures in car sensors. Continuous operation of machinery is a requirement and 

designated standards on the failure event count has to be followed. Moreover, the time-series data needs to be properly 

published, meaning that the sampling rate, amount of missing values and noise level has to be reasonable and understood 

before usage. Reinforcement and supervised learning as prediction engines can later be trained and labelled with 

predictions, which requires a direct mapping from threshold deviations to predicted failures. 

4.2. Data Processing and Cleaning                                             

The following analysis describes the data-related efforts completed to develop the ML solution for Dozer, one of the Use 

Cases in the PELAGOS project. The data consisted of six years of operation of the Dozer machine in several fields in 

Northern Finland. The dataset is recorded by a higher-end telematics unit that gathers a wide multitude of telematics 

parameters, all recorded every 5 min (in some cases every 1 min if a parameter changes status). A preliminary client-

driven filtering of the data also took place, with records containing non-working hours and irrelevant parameters dropped 

(an average of 311 TelOG records per day per telematics parameter). 

For the ML efforts, the dataset has to be further trimmed (either manually or automatically) to remove anything that 

doesn’t meaningfully connect with the preventive maintenance theme. The key local indicators (KLIs) from the telogs 

were identified to make clustering possible (in practice, a lot of effectively similar parameters were dropped). This 

resulted in about 71 parameters written in some proprietary code. Some of these include the working hours of the arm, 

fuel consumption, fuel changing, and working hours of engine resources, among many others. 

Unexpected gaps and outliers in the data were almost ubiquitous and had to be handled. Machine learning (ML) methods 

often require extensive preprocessing and cleaning of data to eliminate errors and inconsistencies. As non-lab-based 

processes, the datasets gathered from many sensors typically include problems such as erroneous measurements, incorrect 

data types, repetition in the records, odd-value signals, or many consecutive NaNs (missing values). The cleaning efforts 

were therefore structured into three parts: data analysis-driven cleaning of the outlier values, selection-driven data-cutting 

based on shape; and value-driven NaN imputations. 

4.3. Data Storage Solutions                                                         

The main goals of the data storage solution are to effectively support the envisioned data workflow compared to 

alternative prior works, and to serve as a prototype architecture for future research endeavors. In addition, supplementary 

goals consist of providing postgraduate students an opportunity to participate in related research for career building, to 

demonstrate the accessibility of data reinventions in smart agriculture with hosted open-sourced components, and to 

develop and document a build procedure for the architecture that can be communicated to farm tech companies. These 

goals are addressed through the proposed architecture, which is flexible, modular, and extensible. The core components 

of the predictive maintenance application are held within FIWARE’s NGSI-LD and IoT Agents, Elixir-based Chronix, 
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and Grafana, and integrated into a functional architecture using docker compose. The architecture is hosted on a digital 

ocean droplet to ensure reliability and accessibility. The components were selected for extensibility, documenting 

standardized queryable endpoints with open-source codebases for use in extending the application. The EasyExe and 

Docker EXE data ingesters are originally built to allow customization for specific data storages, while the refurbishments 

to the other components are contained within FGAD- and fixed GO-API- repositories. An extensive access guide is 

retained in the repository README for adapting or building the architecture and working with the components 

individually. A video demonstration summarizes the development process and shows off the implemented components. 

Given the rapid pace of technological advancement and agricultural development, it is anticipated that the current 

implementation will need renovations in future research. Sufficient documentation and an online hosted architecture aim 

to minimize the friction of revisiting and revising the data storage solution. 

4.4. Data Pipeline Architecture                                           

The ETL process performed by a scheduled container is defined in the following steps. The implementation of this 

architecture follows the NGSI-LD standard for web APIs, ontology model definition, and data interchange. The 

scheduling of ETL tasks is implemented through the combination of Crontab and a python script. The data integration 

steps are implemented based on the Python libraries and available NGSI-LD API libraries. 

Before the ETL steps are described, the architecture is operated in a cloud environment. Data publishing in the NGSI-

LD format is used to connect this architecture via HTTP(S). Multiple users in different locations can access the 

architecture via their web browser without restrictions of the operating system platform. The whole architecture may 

need at most twenty minutes to restart after any failure belongs to server facilities, which is feasible for users with new 

releases every five minutes. Cybersecurity protection measures are employed to protect against common network-based 

attacks on computers and networks. 

An ETL task is defined as follows: 1. Connect to the Orchestrator platform Redis database using the python API to access 

all structured data. 2. For each uniform resource identifier (URI) of the machine data model, 3. Generate new acquisition 

based on a model and data at the current time including the available, set points, and operational conditions values. 4. 

Store all new data in the Orchestrator context broker using the NGSI-LD format. 5. For each machine, one or more 

messages are stored in the Message Queues of the Orchestrator forwarded to each monitoring dashboard. 6. Close the 

Redis connection and complete the ETL process. 

 
Fig 3: Data Pipeline Architecture. 

5. INTEGRATION STRATEGIES 

Even though the casual nature of analyses needs extra knowledge like domain-related engineering or manufacturing 

knowledge, it can be adjusted for a better performance while properly introducing prediction maintenance techniques 

that could adapt for those other domain applications. These techniques rely on how the data acquisition and measuring 

missions have been carried out. Two main scenarios can be considered, the first one related to data acquisition systems 

and their constraints, and the second operational data, as they could be of value regarding system global maintenance 

policy but at a different positioning and analysis level. Scenario 1: Complete data acquisition systems A strategy regards 

maintenance methods aimed at anticipating system failures when taking into account remaining useful lives instead of 

only reacting to failures when they occurred at costs of delays and high repairs; so, education of predictive models based 

on the respective dataset and KPI indicators is of utmost importance. Initiatives generally combine different methods, 

models or techniques, regarding the complexity and the number of monitored KPIs and signals. The solution is non 

exhaustive as needed tools add accuracy but makes touching it and using them harder. Relying on the adaptability of 

traditional data processing tools to trade-off between performance and simplicity of use by non-specialised operators is 
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essential. Therefore, few tools have, up until now, been directly implemented and included within intelligent maintenance 

systems such as it was developed within the machining centre. It is a built-in solution that maintains, monitors, interfaces 

real-time data with operators while adjusting to any specific CNC type and configuration. It is based on a smart cloud-

based data acquisition system and engines running independently of the tools as sort of services. This tool is fully 

operational on this machine range and is mature to be extended by including new tools such as much more focused on 

one specific KPI. 

5.1. Combining Machine Learning with Data Engineering                                                                         

Despite the benefits of digital transformation, many heavy machinery manufacturers worry that they may miss out on the 

next technological frontier if they develop an incorrectly calibrated ecosystem or build one that no longer fits the 

requirements of their business. Well-established companies, which subsequently form families of brands providing 

equipment, increasingly face the challenge of utilizing data from existing machine ecosystems and harmonizing it with 

data from future machinery for delivering the promised smart applications. There is currently no comprehensive vision 

on how to efficiently combine data generated by machines operating on a heterogeneous, brand-diverse, and 

technologically outdated landscape. With the ecosystem still in flux and supporting standards being formed, it is still 

unclear what baseline solutions can be built today, and how they need to adjust in the future, should data-based 

applications mature. The absence of a unified language across various brands and the heterogeneity in technical 

implementation have rendered these questions even more challenging. The aim is to clarify the baseline capabilities of 

smart maintenance for tractor and machine brands evolving in isolation through heterogeneous data engineering, a 

universally applicable machine learning value chain for deriving and executing knowledge from raw data, and a frame 

for assessing the results. The frame is anticipated to serve as a basis for informing subsequent developments of the smart 

maintenance approach by specifying the information needs and reflecting on the requirements for an application. It can 

also be utilized for comparative benchmarking of solutions and capabilities. Prior to describing the frame and its 

application, the results are presented, specifically the analysis of the processing of existing data. Focusing on the 

investigation of actively generated short- and long-term raw data for understanding machine health. Translating existing 

knowledge on machine health and creation of indicators to this machine domain and examination of how maintenance 

knowledge is created from the status indicators. The general machine learning value chain is illustrated and translated to 

the machinery maintenance domain. An initial version of the frame for evaluating existing smart maintenance capabilities 

at machinery brands is mutually derived and applied for a case study on two grass harvesting machines. The analysis of 

results is presented and used as an entry point into the problems facing brands. Last but not least, future research needs 

are outlined, like the visualized learning aspect of the frame and a large-scale application of the updated formulation. 

 

5.2. Real-time Data Processing                                             

Using a message broker, it’s possible to develop a real-time data processing application to simulate the Smart Agricultural 

Machine system’s working environment. For example, become a publisher that makes a random number generator in 

another application, and publish the data generated with random integer values from 0 to 1000 at intervals of 1 second 

for the ROP server and the task. This data can be generated as the topic according to the necessary document. In other 

applications, subscribe to this topic using the same broker, and display the published data on activities to ensure that data 

is successfully exchanged between applications. The takeaway messages of the data processing module are receiving 

real-time data through the MQTT protocol to prepare data for predicting the condition of Smart Agricultural Equipment. 

Predicting results are also published on the message broker to use for display maintenance history. 

Using ROP and SCADA topics as a setup data storing application, ROP and SCADA servers subscribe to the message 

broker. When the Real-time Operative Data (ROP) is received, it is recorded in the CSV file by the ROP server at the 

same time. Afterward, the data that is recorded for 2 hours is sent to the maintenance history display application as CSV 

files and saved in the monitoring application’s directory file. The rest of the generated ROP data is saved in the same 

data_csv folder as the ROP server, and this data is sent to the predictive maintenance algorithm. Besides receiving real-

time data from MQTT protocol, SCADA server also subscribes to Task topic as a demanding operational task to do. It 

saves the received data to the local SQL database, and displays comprehensible statistics of that data, such as dark red 

color indicates to do an immediate task. 

5.3. Scalability and Performance Considerations                   

The data engineering component of the IoT pipeline uses Apache Kafka to buffer high-frequency sensor data to Amazon 

Web Services (AWS) Redshift. The machine learning model is deployed with the FastAPI web framework 

asynchronously. Given the separation of data treatment, model retraining, and node health reporting, this component is 

easily restated and modified. The algorithm is designed as a two-component ensemble model to handle the trade-off 

between prediction accuracy and performance. Each predictor uses an independent model class, which streamlines and 
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facilitates the addition of alternative models and hyperparameter exploration in the future. Consequently, it is easy to 

adapt the V-Arima component or change its loss function to compute the MAE or RMSE. 

Both predictors use adaptive feature extraction methods and are pre trained with more than half of the training time 

periods to reach the performance target. The simple model with less time-consuming feature engineering is expected to 

be faster than an XGBoost or MLP based prediction model once the one-shot feature selection is performed. The 

performance of pretraining should be tested more carefully with other seasonalities, thresholds, or hyperparameters. 

Nevertheless, most datasets benefit from the configuration, and the pretraining performance is within acceptable 

boundaries when not satisfiable. 

In addition to the level-wise evaluation, different aspects of modelling choices need to be treated further, leading to 

auxiliary questions summarized in Appendix B. Besides the predictive model, other modelling choices to be determined 

include adjustments for periods with several skipped executions, dimensions for temporal or feature splitting, 

configuration of the feature engineering library, and node characteristics to analyse. Most of these choices span all 

modelling cases, but the chain of repeated characteristics provides the opportunity to semi-automate time-consuming 

parameter tuning. 

6. CASE STUDIES 

In this section, case studies will be presented to uncover the potential of machine learning and data engineering methods 

in prediction analysis tasks using data acquired from real operating agricultural machinery. The case studies involve 

prediction analysis tasks from daily soil tillage and soil making operations, including soil tillage ridging prediction, 

vibration feature extraction, prediction of the vibration of soil tillage machine components, and prediction of micro-

stoppage behavior of a soil making machine. Recent years of research work on these tasks and their resulting solutions 

will be explained and discussed. Various architectures of machine learning solutions developed in-depth, and they are 

used to illustrate the integration of AI and data engineering solutions. 

Soil Tillage Ridging Prediction Analysis Task One case study is to predict the formation of ridge soil tillage type 

operation soil spillage over time. A soil tillage machine employed to pull-under soil tillage operations which randomly 

forms ridge type shape operations is used to extract operating machinery signals like implement working speed, vertical 

movement of the implement, preliminary operating signals, vibration signals of the tractor and hydraulic oil cooler, and 

accelerometer signals on the implement. Application relevant data extraction simulation and uncertainty quantification 

methods are developed and employed to address the signal reliability challenge. Then time-series advantages of novel 

data engineering methods for timeline association, cropping/re-arranging, and handling data loss are proposed to bridge 

data engineering with machine learning methods flexible to work with the learning features extracted from both time 

domain and frequency domain. Time-series based prediction analysis solutions are proposed as this is a task to predict 

an event happening when a rising region is formed on an associated time-series data. These proposed solutions accurately 

predict the ridging event using its constitutive feature as input without using domain knowledge. The integration of data 

engineering methods bridge design and implementation of widely used LSTMs as plug-and-play learning blocks. This 

case study uncovers the potential of interpretable prediction modelling to raise critical feature inputs with statistical 

significance on the predicted event. 

Vibration Feature Extraction Analysis Task A high-vibration situation of soil tillage machinery is difficult to predict in 

advance and prevent due to the inconsistent cause of high-vibration phenomenon. This case study is to detect the high-

vibration situation of hydraulic shovels on a soil tillage bin which is a critical high-vibration part of the soil tillage 

machine. A soil tillage machine employed to pull soil making operations is used to extract vibration signals, operating 

machine parameters like working speed and error codes, and environmental factors lifted from the ground working 

friction power and humidity. A spatially informed multi-channel CNN is designed based on an insight gained by the 

analysis of soil making and relevant stochastic processes sampling data and enabling the captured behaviour for long-

term prediction analysis and interpretation. This solution transparently detects the machinery's high-vibration behaviour 

with high accuracy and manages convolved filters to perform local representative frequency band search. This case study 

uncovers the value of explainable and transparent machine learning results in the potential application of real-time 

indicator on-season soil making operations and future machine collaboration between soil tillage machinery and data 

pipelines. 
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Equ 3:  Maintenance Decision Rule. 

 
6.1. Predictive Maintenance in Tractors                            

Predictive maintenance identifies the condition of in-service equipment and determines the maintenance actions required 

for a given period. This aims to minimize maintenance costs while maintaining a high level of safety and machine 

availability. Predictive maintenance is widely adopted in industries for complex machinery and critical components to 

avoid failures and delays. The predictive maintenance system consists of data acquisition, data pre-processing, predictive 

maintenance model generation, predictive maintenance execution, and failure diagnosis. 

Predictive maintenance is implemented in several SISO machines and process automation. A twin-screw extruder is 

analyzed using regression and classification models to estimate the remaining useful life of the machine using 

temperature, pressure, and motor current measurements. A critical transmitter used for pressure and temperature 

measurement is monitored for six different types of sensor failure. In an electro-mechanical system, predictive 

maintenance is adopted to model the current's temporal effect on the predictive maintenance decision. The modeling of 

predictive maintenance using event logs is discussed. 

Several approaches use output from sensors recording physical phenomena linked to the degradation process of the 

machine. In some applications, event logs generated by the machine are used instead. The predictive maintenance 

problem is formulated using the event logs of a fleet of automatic teller machines generated over several years. A new 

publicly available ATM event log dataset is introduced. As a case study, the CAPA method is applied to this dataset to 

perform predictive maintenance on an ATM fleet. A different approach to solving the predictive maintenance problem is 

also introduced, illustrating another use case on the same dataset. Finally, other interesting avenues related to the use of 

event logs in predictive maintenance are highlighted. 

6.2. Sensor Data Analysis in Harvesters                                 

The analysis of the data collected from sugarcane harvester sensors is performed using machine learning (ML) 

techniques. A set of seven input variables is defined, constructed from the data that can be measured in the usual 

operational situation of the harvester. Six algorithms are trained and compared, including Linear Regression (LR), 

Artificial Neural Network Multilayer Perceptron Backpropagation (ANN), Support Vector Regression (SVR), K-Nearest 

Neighbor (KNN), Extreme Learning Machine (ELM), and Random Forest (RF). The implementation of a fluidity or mass 

flow measurement in sugarcane harvesters has considerable economic potential for companies, farmers, and sugar and 

ethanol plants. To obtain advantages from mass flow data, it needs to be merged with a Model Predictive Controller 

(MPC) capable of managing the company's system’s leveling and gauging control. Data monitoring involves the storage, 

organization, and annotation of a requested data set over a certain period. The data examined through analysis is formed 

mainly as time series measurements. Due to the amount of data generated and the speed of their processing, designing 

the software architecture to observe the sensor signals is a challenge. In this software architecture, the processing and 

continuous storage of production data need to be designed to be carried out off-site when they generate a greater amount 

of data than what can be managed online. The analysis results based on ML techniques are expected to allow for the 

detection of drift or anomalies and subsequent processing. The output of the data analysis consists of information for 

monitoring and alarm decision-making, with time references being essential. However, the diversity, format, and 

frequency of collected data present challenges to integrating this information into a coherent view of the monitored 

environments. 

 

6.3. Irrigation Systems Monitoring                                            

The intelligent monitoring of irrigation systems is a critically significant task for agriculture development and the national 

economy. The soil moisture of a reasonable constant level is crucial to guarantee the proper growth of crops, and attaining 

proper soil moisture depends on the design and control of irrigation systems. In general, soil moisture is controlled by 

executing certain irrigation behaviours, which is a challenging task, especially when the irrigation systems are large-scale 

and complex. A typical large-scale irrigation system consists of watershed areas with complex variations in geography 

and climate conditions, and at the same time, it involves a wide array of behaviours, including irrigation design, systems 

design, and systems control. 
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Solar-powered intelligent irrigation machines mounted in a vehicle-based form factor that can work on outdoor terrain 

for a field-scale study is provided. Semi-automated processes with minor human interventions such as preparation of 

operation mode parameters and observation of machine movements may prevent failures in control. A demonstration of 

site-specific irrigation with remotely observed flood irrigation across a conventional furrow-flooding basin irrigation 

system is provided. Initial testing and further information on the machine operational system are included in this 

demonstration. A methodology to guide the machine designs and estimate operating parameters of the field-scale smart 

irrigation machines is also proposed. The proposed operational mechanisms and techniques can be adapted as self-

sufficient and low-cost solution options for many similar problems that agriculture and farming face today. The currently 

available commercial solutions tend to be complex and expensive. 

Having limited scalability across regular and degraded states of operational environments, such limitation creates barriers 

to the adaptation of advanced control machines to many conventional agriculture systems and practices. 

 
Fig 4: Irrigation Systems Monitoring. 

7. CHALLENGES AND SOLUTIONS 

Predictive maintenance (PdM) has gained attention in a variety of sectors, because it enables enterprises to enhance 

equipment uptime, reduce costs, and optimize overall productivity. Many researchers have worked on PdM from various 

perspectives since then. Data-driven models and machine learning (ML) techniques have produced highly accurate 

models when enough quality training data are available. ML adoption in oil and gas operations is hindered primarily by 

data, culture, and strategy issues. Data-related issues such as availability and quality of data, auditing of data, feature 

engineering by domain experts, interpretability of algorithm outputs, and security issues are challenges for the adoption 

of AI/ML technologies. 

IoT applications generate more data than can be used in conventional data processing systems, leading to a storage crisis 

as well as the need for increased processing power. Stream processing architectures overcome this challenge through the 

design of modularized data processing topologies that consolidate data queries and actions into a real-time processing 

workflow. However, the development of stream processing topologies is hard for end-users. The difficulty handling the 

velocity of streaming data limits predictive and defer processing in situations where the model cannot run in-realtime due 

to excessive delay associated with the training loads or inference. Finding an integration method that would enable data 

engineers to deploy ML models in a streaming architecture without needing specialization knowledge is also a challenge. 

The development of stream processing architectures has facilitated the management of data generated at data rates and 

volumes higher than can be reasonably stored. Although these applications are becoming more common at the same data 

velocity, the integration of pre-trained global ML models with Kafka remains unexplored. An end-user oriented 

integration approach makes it easier to deploy ML in-stream data processing topologies. 

7.1. Data Quality Issues                                                          

Sensor data communications and connections are critical in MIL-ICSs. Wire inside the tunnels need to be protected from 

harsh environment, corrosion, wear and tear. Exposed TCP wired connections are susceptible to interference and hacking 

due to the opening of the ports, including TCP and UDP. Keeping the security of MIL-ICSs is of utmost importance to 

not just the operational life of the military platform but also the safety of equipment, soldiers, and the covert nature of 

military operations. Sensor failures deteriorate the situation awareness of outside environments, vehicle driving state, 

weapon engagement information of cyber attack, etc. Understanding, predicting and diagnosing the cause of these failures 

can prevent severe degradation of the mission effectiveness of the military systems. 
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Data from MIL-ICSs can be categorized into two types: offline data and online real-time sensor-streamed data. The 

offline data includes persistent data in text, CSV files and databases. The structured offline data is easier to format than 

the semi-structured sensor status-data. Various data pre-processing methods such as handling missing values, outlier 

removal, normalization and discretization are available for structured data cleaning. The online sensor-streamed data are 

in json format. The challenge is on how to properly parse the incoming stream data to get all needed information. The 

difficulty arises from messy sensor streams, which include redundant and dirty information. Because of entrance to the 

parsing stage being in the format of streaming data, some data parsing and cleaning techniques such as dropping of semi-

structured data is not applicable here. 

The MLiS approach extracts novel physical information from streaming sensor data superseding the traditional counter 

between two sampling points, which is named and considered as the first derivative of sensor data. Second derivative 

soon before a sampling point, named and considered as a jerk, is also extracted. These two compound features depict the 

force and acceleration of vehicles from knowledge of physics, being able to accurately and effectively detect the pushing 

and tilting of the infrared target. However, jerk extraction is an irreversible transformation. A careful consideration has 

to be made to determine how to handle this sensor data one-shot at parsing stage. 

The need for eliminating unexpected tool breakage, unscheduled downtimes, enhanced product quality, and more 

competitive business effectiveness, transforms traditional run-based maintenance to zero/dynamic time maintenance, 

which is an overarching customer-demanded option. From the data edge, recent aero-sensor developments, ever-cheaper 

sensor deployment options, and the rising convergent data availability from SCM, CAD, Materials Handling Systems, 

ERP, MRP and CLM, can be utilized for zero-downtime, and in conjunction with proper logical models, to achieve 

immediate feedback of the detected incursions to immediate planning or even back to the design stage. 

 
Fig Data Quality Issues 

7.2. Model Accuracy and Reliability                               

 Predictive maintenance (PM) is steadily becoming a mainstream technology across numerous industries and domains. 

Given the recent explosion of data in many process industries, data-driven maintenance and, specifically, machine 

learning (ML)-driven PM have attracted great interest from both academia and industry. However, this interest has not 

yet been reflected in wide adoption. This paper aims to investigate the current status of research and development of the 

cross-field PM, focusing on the three core sub-domains: data strategies, modeling strategies, and explaining strategies. 

Numerous promising solutions are presented as well as challenges, gaps, and future directions concerning each sub-

domain. Finally, landmark papers are surveyed to highlight essential benchmarks and trends in each sub-domain. 

Artificial Intelligence (AI) refers to the ability of a software or hardware to imitate intelligent human behavior. With no 

clear boundaries, AI includes many facets such as deep learning (DL), machine learning (ML), knowledge graph, and 

natural language processing among many others. One of the incoming areas of disciplines under the umbrella of AI, is 

predictive maintenance (PM).  

7.3. Integration Complexity                                                        

The proposed system integrates multiple architectures and platforms. The implications of the integration of every single 

platform are detailed in this section. Regarding the Mobile Web Application, the main focus of the development was on 

creating a centralized and intuitive dash. Indeed, a web application that retrieved and showcased the information about 

the performance of machine equipment, scheduled maintenance activities, tasks for the maintenance operators, and 

dashboard settings was developed. The web application was designed to be fast-loading, targeting to reach complete 

satisfaction of educational and non-business users. Additionally, performance versus security is a delicate trade-off area 

where many business applications are vulnerable. The development team executed a substantial amount of testing during 

the entire development of the web application. These tests were both performed: operating system tests, internet speed 

tests, error handling tests, etc. Furthermore, the accessibility of the domain, the dashboard URL, and the monitoring URL 

was tested. 
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The Integration of the FIWARE case on the proposed platform was mostly focused on generating a receivers hook that 

consumes the “Event” data sent by Perception. Precisely, a microservice was developed that receives events through a 

webhook, catalogs them in a MongoDB database, and sends an alert to the Pusher API and the dashboard. Its development 

was not overly complex; the most demanding parts were those involving Pusher and web socket management. It should 

be noted that, due to lack of time and API documentation, some FIWARE API calls were not fully implemented. The 

integration of the fleet management microservice consisted of a case router microservice applied to manage 

communication among Differential Location Detection APIs and the Process ID Broadcaster API. In addition, a fleet 

management microservice was developed to keep track of machine equipment activity and interaction. It channeled state 

information from an activity event through a Pusher channel. 

8. FUTURE DIRECTIONS 

In the realm of predictive maintenance (PdM), machine learning (ML) applications are evolving rapidly, a quiet 

revolution inspiring new research ideas and newer PdM mechanisms . At first, early implementations were bolted on top 

of ad-hoc preventive maintenance schedules. As research expanded, new broadly defined PdM architectures emerged 

paying homage to long-proven data-driven modelling methodologies. The research blossomed into diverse techniques 

addressing complex PdM challenges but rapidly creating a jungle of obscure definitions, methodologies and tools to fully 

explore the impact of ML on PdM. 

Smart agricultural machinery has created large volumes of data worsening the ability to translate data into actionable 

information. Making machinery and farmers smart provides an opportunity to create a new pool of agricultural data on 

machines incorporating advanced sensors and data engineering technologies adding real-time intelligence to transform 

agricultural machinery. ML-powered approaches, along with data engineering processes, can optimize machinery 

performance and bring predictive maintenance capabilities to provide accurate state and system health monitoring that 

can affect productivity. Towards that goal, the integration of ML and data engineering for predicting maintenance is 

advisable paired with social and economic models to study their impact on agriculture’s operation and benefits. Future 

predicted data engineering patterns such as continuous event archiving in delayed cycles and time plateaus where 

structural covariate modelling of the data changes could be ground-breaking. The aforementioned ML workflows and 

tools can handle the temporal data and find usable patterns for automatically knowing the “what,” “how,” and “why” of 

machinery failures. 

Collaboration with domain knowledge engineers can bring even more advanced methodology with multiple knowledge 

bases, definition sets, visualizations, and rule determination models bridging the gap between the digital and physical 

worlds. 

8.1. Advancements in Machine Learning                                  

In recent years, the integration of machine learning and the internet of things has gained significant popularity in data 

science. In this thesis, the use of machine learning models combined with internet of things devices is examined in the 

context of predictive maintenance for agricultural machinery. Here, the motivation and context behind the research 

questions are presented. Agricultural machinery, like all types of machinery, undergoes wear and tear over time. Failure 

prediction is referred to as the prediction of wear and tear or machinery failure. Such predictions can be used to perform 

maintenance on the machinery before failure occurs. Since bad failure predictions can easily affect the financial stability 

of a company that maintains machinery, even small optimization in failure predictions can be of great help. 

To better understand the need for and possible applications of predictive maintenance of agricultural machinery, some 

trends in agriculture and the agricultural machinery market are presented. Significant technological advancement has 

been made in agriculture over the past few decades. Increasingly, more types of agricultural machinery have been 

developed. As a result of the technological advancements and increased complexity, predictions of wear and tear within 

agricultural machinery are needed. This will assist technicians, farmers, and manufacturers in taking preventative actions. 

The predictive maintenance pipeline for agricultural machinery is divided into three parts. First, data engineering needs 

to be applied to obtain meaningful features. Data engineering, in this context, is the gathering, storing, and cleaning of 

data, as well as transforming it into readable formats. Second, a machine learning model is selected and trained. The 

trained models will then be selected using a set of evaluation metrics. Third, the selected models are subject to time-

based predictions to see how long before failure predictions take place. In addition, the selected models are compared to 

a benchmark model. 
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The predictive maintenance pipeline is then utilized to make predictions on gathered data from agricultural machinery. 

Multiple models are trained to make predictions based solely on signals collected from sensors from machinery. The 

models tend to take into account the information of a certain time window style. Thus the state-of-the-art log-based model 

cannot be directly integrated into the current pipeline, so only the supervised classification models are trained using the 

data from agricultural machinery. Over a dozen different variants of these models are trained, but eventually, only two 

models are selected and compared. 

8.2. Emerging Data Engineering Technologies                          

The emerging data engineering technologies are described in the following subsections, including "Cloud Computing" 

for data storage, "Edge Computing" for real-time data processing, and "The Internet of Things" for inexpensive sensors. 

As for the efficient machine learning technologies, "Federated Learning" for model training using data at the edge, and 

"Algorithm-Data" based methods for smarter and more efficient machine learning algorithms, are introduced. 

They are orthogonal to one another in a sense that they can enhance or augment one another, for example, edge computing 

is suitable for federated learning and the Internet of Things can provide more data for anomaly detection. 

Cloud computing is a data-intensive technology which provides on-demand network access to a pool of configurable 

computing resources. As a mainstream computing infrastructure, it is well known in two forms: platform service (PaaS) 

and stored all data in the cloud. For the predictive maintenance task of the smart agriculture machinery, an open-source 

cloud computing engine named FIWARE with both PaaS and SaaS as APIs can be adapted and extended. The collected 

data streams from many data sources such as sensors in the smart agriculture machinery are stored in a Fiware powered 

cloud database, called "Orion Context Broker". On the other hand, the cloud virtual machine is provided as a service for 

developing machine learning models for time series forecasting and writing results in the cloud too. 

Edge computing is also a distributed computing paradigm that brings computation and data storage closer to the sources. 

It is capable of pre-processing images in the mobile devices, real-time data processing and lower data latency (more than 

70% reduced latency). Equipped with various sensors for monitoring environment and vibration of equipment, the edge 

devices can gather a wealth of data. As a primary computing/deployment environment, edge computing is best for real-

time anomaly detection. Since model training is cumbersome and resource demanding, a pre-trained machine learning 

model for detecting abnormal signals can be transmitted to the edge devices for anomaly detection. The results will be 

sent back to the cloud side together with raw signals when an anomaly is detected, so that a further analysis can be carried 

out in the cloud. 

8.3. Potential Impact on Agriculture                                 

Precision farming and data-driven (DD) agriculture are arguably providing the future for the agri-food supply chains with 

the enough resilience to answer both: the ever-expanding planet population and the continuous changes of the 

environment. Data is seen as the main driver to turn this vision into reality, with geospatial and non-geospatial data at its 

heart. This is the case for data-centric agricultural research as well: the global vision is built on consolidated statistical 

and multi-sensor platforms that allow for persistent monitoring of both: the crop and the environment, unprecedented 

informatics techniques, but also pixel-wise, time-dense geodata exploitation. 

Sensor data represents farmers’ first-level input to this data-driven revolution. It is becoming increasingly available with 

commodity prices, research, and agri-tech company satellite and aerial imagery providers. As a result, the data streams 

are expected to always grow, even more with future satellites carrying new environmental sensors. Predicting and 

avoiding these events has far-reaching consequences for agriculture, environment, food security, and precision farming. 

The agricultural sector is largely dependent on weather, soil conditions, and evaluates multiple conditions to arrive at a 

decision. Rain-fed crop irrigation and perfect disease-pest management remain challenges. 

On top of these premises, the current availability of high-performance computing (HPC) infrastructures on cloud is again 

democratizing access to advanced modeling methods and big data. At the same time, with new data collection and storage 

technologies, it is often cost-effective to generate and collect data instead of implementing new modeling efforts. 

Nevertheless, there are still ambiguities in the data-driven epiphany: majority of the accuracy of the models, which can 

be achieved only with investment in the data. Data is coming from heterogeneous sources and various modalities, giving 

rise to the so-called information overload, a no trivial barrier under productive use of agri-data and induced practical and 

theoretical challenges alongside great opportunities. 

https://ijireeice.com/


ISSN (O) 2321-2004, ISSN (P) 2321-5526 

  

 

IJIREEICE 

International Journal of Innovative Research in 
Electrical, Electronics, Instrumentation and Control Engineering 

Vol. 9, Issue 12, December 2021 

DOI:  10.17148/IJIREEICE.2021.91215 

© IJIREEICE              This work is licensed under a Creative Commons Attribution 4.0 International License               104 

 
Fig 6: Integrating Machine Learning and Data Engineering for Predictive Maintenance in Smart Agricultural 

Machinery. 

 

9. CONCLUSION 

This paper presented a methodology for integrating machine learning and data engineering for predictive maintenance 

for smart agricultural machinery using a case study of a precision planter. It was shown how data engineering techniques 

as well as insights gained from domain knowledge and computer engineering processes are important for preparing data 

for model training and how these processes can significantly enhance the potential of machine learning algorithms. A 

detailed overview of the applied data engineering techniques was presented. 

The proposed approach was evaluated on the case study of a precision planter where machine learning and data 

engineering methods were integrated to develop a prediction model of faults in a hydraulic system. Failure data was 

collected from ag-tech companies and pre-processed using various data engineering techniques. Several machine learning 

techniques were applied and benchmarked, showing the method can significantly reduce maintenance time and allow for 

a more efficient workload allocation between technician resources. It was noted that through the presented approach, 

significant insights were gained from the domain knowledge and industrial context. Apart from the applied machine 

learning model, the gathered data engineering techniques can be valuable for further case studies and algorithm 

benchmarkings. 

The research aimed to enhance the predictive maintenance for smart agricultural machinery, for which a real-world case 

study of a precision seed planter was used as a representative example. The employed methodology for data acquisition 

and engineering as well as the applied machine learning algorithms for fault prediction were presented. The research shed 

light on the critical domain knowledge of smart agricultural machinery and demonstrated the necessary data pre-

processing steps and model selection and evaluation details. This research is expected to foster future research in the area 

while being immediately implemented in practice. 
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