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Abstract: This paper presents a Long Short-Term Memory (LSTM) network-based method to identify faults in a 3-phase 

induction motor.  Various external faults in a 3-phase induction motor are first described.  A brief introduction to LSTM 

technique is then presented.  The LSTM is trained to classify external faults using 3-phase voltages and currents collected 

from a 1/3 hp induction motor in real-time.  MATLAB is used for training and testing the LSTM method. Results show 

that the proposed LSTM based method is effective in classifying different external faults in the 3-phase induction motor. 

The performance of the LSTM method is observed to be better than some of the previous methods in model formation 

and testing accuracy. 
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I. INTRODUCTION 

 

The 3-phase induction motor is the most important motor used in industries. The operating conditions may sometimes 

lead the motor into different fault conditions. The major external faults range from overload to single phasing [1]. To 

avoid damage, the motor should be disconnected when a fault is experienced.  Microcomputer-based protective relays 

monitor the motor and disconnect it when a fault occurs [2]. The relay logic used to identify these faults requires effective 

signal processing techniques for reliable and fast operation. With the recent developments in Machine Learning (ML), 

methods such as Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Deep Learning Techniques 

(DLT) have been currently applied in induction motor’s faults detection [3, 4]. The conventional neural networks 

approach may produce models that can over-fit the data due to limitations with generalization. The SVM method showed 

better models for identifying faults. Recently DLT have been extensively used in different engineering applications 

including faults identification [4,5]. The Long Short-Term Memory (LSTM) network is one of the DLT received 

considerable attention. 
 

Siddique et al. [6]and Ojaghi et al. [7] presented various stator fault identification methods for induction motors in their 

review papers. Many researchers have used the Motor Current Signature Analysis (MCSA) method that uses high 

frequency components in current to diagnose faults in induction motors [8]. Incipient faults such as stator winding faults 

and bearing wear in single-phase induction motors were detected using current and speed as inputs to a neural network 

by Chow and Yee [9]. In reference [10], ANN was used for external faults classification in real-time for a 3-phase 

induction motor. The SVM method for detecting faults in induction motors was proposed by Poyhonen et al. [11], Salem 

et al. [12] and Kolla and Hammo [3]. A motor protection system based on fuzzy logic was proposed in [13]. The SVM 

for identifying broken rotor bars in motors was used by Keskes et al. [14]. The SVM and MCSA methods were combined 

to detect induction motor faults by Fang and Ma [15]. Recently deep learning methods such as Convolution Neural 

Network (CNN) and LSTM were applied to mechanical faults diagnosis in rotating machines including induction motor 

[16-20]. Pan et al. used CNN and LSTM to diagnose bearing faults in a motor dynamometer system [16]. Eren has also 

applied CNN for detecting faults in bearings [17]. Lee et al. applied CNN to diagnose  rotor and bearing faults in induction 

motors [18]. Yang et al. used LSTM for detecting mechanical faults in the wind turbine drivetrain diagnostics simulator 

[19]. Lei et al. also used LSTM for mechanical faults diagnosis in an experimental wind turbine system [20]. However, 

there was not much work done in applying deep learning techniques to detect external electrical faults in 3-phase 

induction motors. 
 

This paper presents LSTM-based technique to detect external electrical faults in a 3-phase induction motor.  Different 

types of external faults in an induction motor are explained in Section II.  A review of LSTM network is presented in 

Section III.  The LSTM is trained to identify faults using 3-phase RMS currents and voltages obtained in real-time from 

a 1/3 hp cage rotor induction motor.  MATLAB program is used for training the LSTM network. These details are 

described in Section IV.  The trained LSTM is tested with fault currents and voltages data from the induction motor.  

These testing results are discussed in Section V.  Concluding remarks are offered in Section VI. 
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II. FAULTS IN 3-PHASE INDUCTION MOTOR  

 

Different types of external electrical fault conditions are generally experienced by a 3-phase induction motor [1]. The 

faults include overload, locked rotor, over voltage, under voltage, unbalanced supply voltage, and single phasing.  

Protective relays monitor the motor to disconnect when these fault occur [2]. These faults and protection used for them 

were described in references [1, 3].  The motor voltages and currents have distinctive features during faults as discussed 

in [3, 10]. As an example, 3-phase currents and voltages for an unbalanced voltage fault are shown in Fig. 1. It can be 

noted that the three voltages and currents have unequal amplitudes and phase angles. These characteristics are used by 

relaying methods to identify various faults in induction motors [1]. 

 

 
Fig. 1 3-phase voltages and currents for unbalanced voltage fault 

 

Microcomputer-based relay methods were proposed in the literature to protect a motor during external fault conditions 

[1, 2].  There have been recent attempts to use ML techniques such as ANN and SVM to classify these faults [3, 10].  

This paper further investigates the use of ML techniques, and applies LSTM-based method to detect external faults in 3-

phase induction motors. 

 

III.  LONG SHORT-TERM MEMORY 

 

In the past, the LSTM network was successfully used in the deep learning techniques to overcome the problems associated 

with vanishing and exploding gradients in basic Recurrent Neural Network (RNN) [21, 22]. The LSTM was proposed in 

1997 by Hochreiter and Schmidhuber [21] and improved in 1999 by Gers et al. [22]. The intuition behind LSTM is to 

remember all the previous knowledge that the network is engaged so far and forget all the irrelevant data. These are 

accomplished by introducing a LSTM block in the RNN. Specifically, different activation function layers are used for 

different purposes to achieve the objectives of LSTM [23]. 

 

A basic LSTM structure has four different gates called input gate, output gate, forget gate, and a cell unit which are shown 

in Fig. 2 [23]. The working principle of LSTM is similar to the operation of the RNN [21]. However, the internal cell 

state of LSTM is passed forward along with the hidden state that differs from the RNN [23]. 
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Fig. 2 The basic architecture of a peephole LSTM cell 
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The algorithms of LSTM can be expressed from Fig. 2 and given by the following equations [23], 
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where, the input from cell to input gate is represented by m, the input gate vector number is j, the forget gate vector 

number is k, the output gate vector number is l, the cell vector number is c, the value of the cell is expressed by d, and 

the activation functions are given by f, g, and Φ. A typical architecture of LSTM consists of sequence input layer, LSTM 

layer, fully connected layer, softmax layer, and classification layer. These layers are shown in Fig. 3. A description of 

some of these layers is given below. 

 

Sequence Input 
Layer

LSTM Layer
Fully Connected 

Layer
Softmax Layer

Classification 
Layer

 
Fig. 3 Proposed LSTM model for fault detection 

 

The fully connected layer takes the output from the previous layer and sends it to the next layer after flattening it and 

changes into a single vector where every output neuron from the previous layer is connected to every one of the next 

layer neurons [4]. The Softmax classifier is used for multi-category classifier problems in which an input vector is sent 

into a mathematical function that produces an output vector whose elements are in the range (0– 1), and they add up to 

1[4]. The mathematical function is expressed by: 

S(yi) =
eiy

∑ ejyj
                       (10) 

where S is the softmax function for the variable y. The derivative of the softmax function is calculated during the back 

propagation process to update their respective weights in the network [4]. The total error is minimized using these updated 

weights in gradient calculations. The derivative of softmax function is expressed by: 
dS(yi)

dyi
= S(yi)(1 − S(yi))                      (11) 

In the softmax classifier the cross-entropy loss function is used because it gives a better performance where the output is 

a probability distribution [4]. The mathematical expression of the cross-entropy loss function L used in regression and 

classification problems is given by: 

L(y) = −∑ yi
′

i log⁡(yi)                      (12) 

where y and y′ are the output label and target label of the network.  

 

In deep learning, an optimizer is required to reduce the loss functions. During the learning process, the optimizer is used 

to find out the optimized value of weights based on the value of loss function [24]. Adam optimization, used in this paper, 

is also known as Adaptive Momentum Estimation and is a first-order gradient-based optimization for stochastic objective 

functions, based on exponential weighted moving averages [24]. It estimates both the first momentum and the second 

moment of the gradient [24]. Assume that f(θ) is the stochastic objective function with parameters⁡θ. The first momentum 

vector and second moment vector can be written as: 

μt = β1. μt−1 + (1 − β1). gt                     (13) 

vt = β2. vt−1 + (1 − β2). gt
2                                   (14) 

where, β1 and β2 are the weighting parameters whose values are usually 0.9 and 0.999 respectively, gt is the gradient of 

objective function given by:  

gt = ∇θ. ft(θt−1)                                     (16)  

The Adam optimizer uses a re-normalization. The corresponding bias-corrected first momentum vector μ̂t and bias-

corrected second moment vector v̂t can be represented as: 

μ̂t =
μt

1−β1
                       (17) 

v̂t =
vt

1−β2
                       (18) 
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The updated form of the objective function parameter is given by: 

θt = θt−1 − α.
μ̂t

√v̂t+ϵ
                      (19) 

where the learning rate is α and ϵ is a very small number. The common choices for initialization of the Adam optimization 

algorithm are α = 0.001, ϵ = 10−8, μ0 = 0, v0 = 0 and t = 0.  

 

IV.  LSTM METHOD FOR IDENTIFYING INDUCTION MOTOR FAULTS 

 

The first step in using the LSTM method for identifying induction motor no fault and fault conditions is to select inputs 

and outputs for the LSTM method. Inputs are selected as RMS values of 3-phase currents and voltages in this paper.  This 

results in six (6) inputs to LSTM.  The data is classified into seven (7) output categories corresponding to no fault and 

six faults conditions described before.  The outputs are categorised from F1 to F7 and the corresponding category is 

obtained from LSTM if that condition exits. The inputs (RMS currents and voltages) and outputs (no fault and faults 

conditions) of the LSTM model are shown in Fig. 4. 
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Fig. 4 Inputs and outputs of LSTM method to detect induction motor external faults 

 

Training the LSTM is the next step for detecting fault conditions. The current and voltage waveforms for no fault and six 

faults condition are used for this training.  A 1/3 hp, 208 V, 3-phase cage-rotor induction motor was used to collect these 

waveforms in real-time [10]. Over voltage, under voltage and unbalanced supply voltage fault conditions were created 

using three variacs. Single phasing fault was simulated by removing one phase power line connection. A prony brake 

was used to produce locked rotor and overload fault conditions. These faults data were obtained in real-time by a 

LabVIEW program [10]. The current and voltage waveforms for a single phasing fault are shown in Fig. 5. It can be 

noted that one phase current is zero and the currents in other two phases are 1800 apart. For other faults also similar 

waveforms were obtained in real-time. 

 

 
Fig. 5 3-phase voltages and currents for single phasing fault 

-300.00

-200.00

-100.00

0.00

100.00

200.00

300.00

V
o

lt
ag

e 
in

 V

 C
u

rr
en

t 
x 

.0
1 

A

Voltage 1 Voltage 2 Voltage 3

Current 1 Current 2 Current 3

https://ijireeice.com/


IJIREEICE 
 ISSN (Online) 2321-2004 

ISSN (Print) 2321-5526 
 

International Journal of Innovative Research in 
Electrical, Electronics, Instrumentation and Control Engineering 

Vol. 8, Issue 9, September 2020 
 

DOI  10.17148/IJIREEICE.2020.8901 
 

Copyright to IJIREEICE                                                          IJIREEICE                                                                                                5 

This work is licensed under a Creative Commons Attribution 4.0 International License 

The National Instruments data acquisition system was used to obtain the current and voltage signals samples. The signal 

conditioner reduced the voltages and converted currents into their corresponding voltages. The conversion range was ± 

10 V, resulting in the scaling factor of 41.283 V/V for voltages and 2.3741 A/V for currents to voltages. As in [10], a 

LabVIEW program acquired instantaneous currents and voltages which were used to calculate RMS values. These RMS 

currents and voltages are used to train and test the LSTM-based fault detection method. Table 1 lists the number of 

datasets used to train for each fault type [10].  These consist of 788 cases for various faults. MATLAB software is used 

to train the LSTM with these datasets [25]. The trained LSTM is tested with the dataset used for training and a set of 21 

data that are not used for training.  The details of these training and testing results are presented in the next section. 

 

Table 1 Training data cases 

Condition Instances 

No fault - F1 154 

Single phasing - F2 85 

Unbalanced voltage - F3 450 

Under voltage - F4 49 

Over voltage - F5 10 

Locked rotor - F6 10 

Overload - F7 30 

Total instances 788 

 

V. TRAINING AND TESTING RESULTS FOR IDENTIFYING INDUCTION MOTOR FAULTS 

 

The proposed model of the LSTM method for induction motor faults identification is shown in Fig. 6. The RMS values 

of voltage and current inputs are given to LSTM layer as sequence input after proper data preparation.  

 

Sequence Input Layer-1

 LSTM Layer-8

Fully Connected Layer-7

Softmax Layer

Classification Layer

3-Phase RMS 
Current Signals

3-Phase RMS 
Voltage Signals

Training LSTM Model

Training 
Data

Training 
Label

Testing LSTM ModelTesting Data

No fault (F1)

Single Phasing (F2)

Unbalanced
Voltage (F3)

Under Voltage (F4)

Over Voltage (F5)

Locked Rotor (F6)

Overload (F7)

LSTM Model Performance 
Evaluation

Data Preparation

Training Hyper-
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Fig. 6 Proposed model for induction motor faults detection 

 

For training, the 788 faults input data listed in Table 1 are converted into appropriate format for MATLAB. Various other 

layers needed for LSTM method, indicated in Fig. 3, follow the LSTM layer as shows in Fig. 6. The number of hidden 

units in LTSM layer is varied from 7 to 20 and set at 8 to achieve the required training performance. The fully connected 
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layer is set at 7 to correspond to the faults and no faults conditions of induction motor. The parameters used in LSTM 

method are listed in Table 2 for achieving better performance in the training and testing. As indicated, the Adam optimizer 

is chosen for its performance. The number of epochs is set as 50 because the accuracy is stable. The learning rate is 

chosen as 0.1 to achieve the required training performance. 

 

Table 2 Parameters used in LSTM method 

Parameters Value 

Input Size 1 

Number of Hidden Units 8 

Number of Classes 7 

Epoch 50 

Mini Batch Size 27 

Optimizer Adam 

Learning Rate 0.1 

Gradient Threshold 1 

 

The accuracy and loss for trained model are shown in Fig. 7. The figure displays training progress, elapsed time, number 

of epochs, number of iterations, iterations per epoch, maximum iterations, type of learning rate schedule and learning 

rate. From this figure, it is clearly seen that accuracy of the trained model is reached at about 100% and loss function is 

also closed to zero after 40 epochs.  

 

 
Fig. 7 The accuracy and loss in LSTM fault detection method for 50 epochs of training progress 

 

Table 3 shows the confusion matrix for 788 training data set. In this confusion matrix, it can be seen that trained model 

predicts all faults and no fault condition correctly achieving 100% accuracy. The accuracy is calculated using the 

following equation: 

ACC =
TP+TN

TP+FN+FP+TN
                      (20) 

where ACC is classification accuracy, TP is true positive, TN is true negative, FP is false positive and FN is false negative 

value. 

Table 3 Confusion matrix for trained data validation 

n=788 
True Class 

Faults F1 F2 F3 F4 F5 F6 F7 Accuracy 

P
re

d
ic

te
d

 C
la

ss
 F1 154 0 0 0 0 0 0 100.00% 

F2 0 85 0 0 0 0 0 100.00% 

F3 0 0 450 0 0 0 0 100.00% 

F4 0 0 0 49 0 0 0 100.00% 

F5 0 0 0 0 10 0 0 100.00% 

F6 0 0 0 0 0 10 0 100.00% 

F7 0 0 0 0 0 0 30 100.00% 
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The input current and voltage waveforms for one of the cases used to test the LSTM method are shown in Figs. 1, 5, 8 

and 9. Fig. 1 depicts the current and voltage waveforms from an unbalanced voltage fault and Fig. 5 shows the waveforms 

from a single phasing fault. Fig. 8 shows the waveforms for a no fault case and Fig. 9 shows an overload fault case. It 

can be observed from Fig. 8 and 9 that the 3-phase currents amplitudes are more in overload case than the no fault case.  

Similar waveforms were obtained for under voltage, over voltage and locked rotor cases [10]. RMS values of currents 

and voltages for all cases are calculated and reported in Table 4. The third row for each of the cases in the table 

corresponds to some of these seven currents and voltages waveform figures. The table also shows another two sets of 

data that are used as a part of the test data for the LSTM method. The confusion matrix for this test data is shown in Table 

5.  As it can be observed from the table, the LSTM method has correctly identified all the seven types of faults and no 

fault conditions for these three sets of test data giving an accuracy of 100%, calculated using Equation (20). 

 

It can be observed that the SVM method in [3] requires selection of kernel functions and scaling of data in training and 

testing which is not required in LSTM method for fault diagnosis. The ANN method in [10] requires the output to be 

considered either 1 or 0 within 5% of their values in identifying the faults whereas the proposed LSTM method does not 

require rounding for results, making the LSTM method accuracy better than ANN based method [10].   

 

Fig. 8 Voltages and currents for no fault condition Fig. 9 Voltages and currents for overload fault

 
Table 4 Data used for testing the LSTM method 

Faults 
Inputs 

V1 V2 V3 I1 I2 I3 

No 

Fault (F1) 

2.650 2.640 2.696 0.428 0.428 0.431 

2.694 2.652 2.690 0.517 0.521 0.502 

2.622 2.614 2.666 0.410 0.418 0.417 

Single 

Phasing (F2) 

2.688 2.609 2.721 0.625 0.629 0.013 

2.694 2.642 2.703 0.644 0.648 0.004 

2.616 2.600 2.642 0.628 0.632 0.004 

Unbalanced 

Voltage (F3) 

2.624 1.906 2.022 0.538 0.249 0.332 

1.682 2.475 2.702 0.186 0.634 0.628 

1.624 2.019 2.585 0.207 0.449 0.576 

Under 

Voltage (F4) 

1.088 1.087 1.084 0.231 0.239 0.225 

1.966 1.969 1.977 0.305 0.318 0.300 

1.976 1.967 1.995 0.306 0.312 0.307 

Over 

Voltage (F5) 

2.888 2.878 2.863 0.482 0.499 0.496 

2.856 2.839 2.871 0.478 0.477 0.467 

2.882 2.872 2.868 0.488 0.484 0.459 

Locked 

Rotor (F6) 

2.657 2.613 2.687 1.671 1.651 1.669 

2.649 2.614 2.647 3.090 3.096 3.043 

2.573 2.565 2.609 3.052 3.073 2.996 

Overload (F7) 

2.638 2.602 2.675 0.807 0.788 0.800 

2.681 2.639 2.679 0.831 0.833 0.820 

2.604 2.600 2.643 0.882 0.893 0.884 
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Table 5 Confusion matrix for testing data 

n=21 
True Class 

Faults F1 F2 F3 F4 F5 F6 F7 Accuracy 

P
re

d
ic

te
d

 C
la

ss
 F1 3 0 0 0 0 0 0 100% 

F2 0 3 0 0 0 0 0 100% 
F3 0 0 3 0 0 0 0 100% 
F4 0 0 0 3 0 0 0 100% 
F5 0 0 0 0 3 0 0 100% 
F6 0 0 0 0 0 3 0 100% 

F7 0 0 0 0 0 0 3 100% 

 

VI. CONCLUSION 

 

The LSTM method is applied for identifying external faults in a 3-phase induction motor in this paper. The paper gives 

details of various parameters used in the training of the LSTM method. It also gives testing results using fault data 

obtained from a 1/3 hp 3-phase induction motor. From the results, it can be noted that the testing accuracy of LSTM 

method is 100% in identifying all faults and no-fault condition. The performance of the LSTM method is observed to be 

better than ANN method [10] in accuracy and SVM method [3] in model formation. The paper uses RMS values of 

currents and voltages as inputs.  Other signals that may be considered in future studies are directly using the instantaneous 

values of currents and voltages. 
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