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Abstract: In this paper a system which can give better location accuracy of an aircraft for an Air Traffic Controlling 

Officer (ATCO) and also to the Pilot taking inputs from various navigation and surveillance facilities like Secondary 

Surveillance Radar (SSR), Global Positioning System (GPS), Very High Frequency Omni Range (VOR) or Doppler 

VOR(DVOR) and Distance Measuring Equipment (DME) is designed, developed and realized. Navigation of an 

aircraft is the process of obtaining position/ location information onboard which can be obtained by sensors like VOR/ 

DVOR, DME and GPS. Surveillance is the process of obtaining same information namely location of an aircraft by the 

ATCO which is obtained from Radar. The system designed can be used for both navigation and surveillance as it 

integrates data obtained from SSR, GPS, VOR/ DVOR and DME. The designed system is claimed as novel as it can be 

used to supplement ground based as well as satellite based data in addition to navigation and surveillance economically 

at normally designed levels of accuracy and dependability. A multidimensional Kalman filter is used on a Broadcom 

BCM2837R processor in Linux environment using Mathematica 11 to achieve this objective.       
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I. INTRODUCTION 

 

The navigational aids are commonly known as nav-aids which are a set of ground based as well as satellite based 

facilities provide to a pilot of an aircraft positional guidance in the space with reference to the ground references. 

Navigational aids are classified into three groups, namely long range aids. short range aids and terminal aids. DECCA 

is a oldest electromagnetic radio position timing system. It is widely adopted in position fixing system and it takes 

observations from 6 transmission stations using phase differencing techniques. It is operated up to a range of 240 

Nautical Miles (nmi) with accuracy of 50 to 100m.LORAN-C (LF version of LORAN) is medium to long-range low 

frequency time difference measurement system. A master and four secondary transmission stations transmit a set of 

radio pulses centred around 100 KHz in precise time sequences. Receiver measures the difference in time interval 

between these transmissions from different stations. Then it produces a hyperbolic line position based on time 

difference. It is operated up to a range of 1500km. 

OMEGA is a very-long-range, Very-Low-Frequency (VLF) radio navigation system operating in the internationally 

allocated navigation band between 10-14KHz. Omega is based on phase differencing techniques rather than time 

differences. A pair of transmitting stations provides the navigation with a family of hyperbolic lines of position and 

eight transmitting stations with 5000-6000 nautical miles (nmi) baselines will give a global coverage. Omega operates 

in 70-130 KHz frequency range. The short range nav-aids are called enroute-nav-aids, which define the airways and are 

used for locating the reporting points. Very High Frequency Omni Range (VOR) is the work horse of enroute air 

navigation. It provides azimuthal guidance to the aircraft up to 200nmi and operates in the range of 108 to 

118MHz.VOR/ DVOR is the most significant aviation inventionin the year 1950s.By using VOR/ DVOR and DME 

combination pilot can accurately navigate from point A to point B. The Terminal aids are the most sensitive aids, which 

help the pilot in final phase of the landing. The guidance provided must be of very high integrity to ensure a very high 

probability of success for each landing. Primary Surveillance Radar (PSR) and Secondary Surveillance Radar (SSR) 

come under this category.  These facilities play a vital role when the visibility is poor and cloud ceiling is low. 

Instrument landing system (ILS) also comes in this category. In 1973, the US Dept. Of Defence (DOD) decided to 

establish, develop, test, acquire and deploy a space borne Global Positioning System (GPS). The result of this decision 
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is the present NAVSTAR GPS (Navigation Satellite Timing and Ranging Global Positioning System). The GPS is 

proved to be an all-whether, space-based navigation system. The primary goal for developing the GPS was of military 

nature. The multi-purpose usage of NAVSTAR GPS has developed enormously within the last two and half decades. 

With the elimination of SA (Selective Availability) on May 2nd, 2000, the usefulness of the system for civilian users 

was even more pronounced. Today a full constellation of at least 28 satellites are available. The Distance Measuring 

Equipment (DME) provides the slant range distance between the aircraft  and the selected DME ground station. DME 

operates in L-band from 962 MHz to 1213 MHz 

A system which integrates the data received from GPS, Radar and other CNS equipment is developed which can give 

more accurate ‘state vector’ that fully describe the translational motion of aircraft.  The process is usually called 

obtaining ‘Navigation data ‘which can be sent to other on board sub systems namely –to the flight control, flight 

management, engine control, communication control etc. The specialty of this integrated multi-sensor system is that it 

fuses the data received from various platforms namely, GPS data which is basically satellite dependent and radar (SSR) 

and VOR/ DVOR and DME data which is ground based. When the state vector is measured and calculated on board the 

process is called ‘Navigation’. And when the state vector is measured and calculated on ground, the process is called 

‘Surveillance’. The developed system can be utilized both for Navigation and Surveillance. The system is very small, 

light in weight and compact so that it can be accommodated as a sub-system in any environment. 

Sensor description and error analysis was done in respect of three sensors, namely VOR/ DVOR, GPS and SSR 

reported in [1],[2] and [3]and the results are enumerated. It was found that the aggregate azimuth error is ±50 for VOR 

and ±30 in respect of DVOR, reduced to  ±10 using scalar kalman filter. The altitude error in respect of GPS also 

reduced significantly using scalar kalman filter. The error in altitude in respect of SSR reduced from 25m to 5m using 

scalar kalman filter which is very significant improvement. These three sensor outputs are combined successfully using 

a vector Kalman filter and the results are reported in [4]. In this paper we have added two more sensors namely DVOR 

and DME with simulated data, taking the total number of sensors to five. A vector kalman filter algorithm is used with 

Broadcom BCM 2837R processor in Linux environment to combine the above five sensors simulated data using 

Mathematica 11. 

 

II. MULTI DIMENSIONAL KALMAN FILTER 

 

In case of simultaneous estimation of a number of variables the vector equations are formulated. The estimation 

problem for multidimensional systems is formulated in terms of vectors and matrices. Since there is equivalence 

between scalar and matrix operations the equations of scalar Kalman filter are extended to vector /multidimensional 

Kalman filter as follows: 

Model  :         X(k) = AX(k − 1) +  Bu(k) + W(k)           (1) 

       Y(k) = CX(k) + V(k)                                  (2) 

Predict  :       x̂(k) = Ax̂(k − 1) +  BU(k) + W(k)            (3) 

 P(k)  = AP(k − 1)AT +Q(k)                               (4) 

             Update  : 

x̂(k) = x̂(k − 1) +  G(k){Y(k) −  C. x̂(k − 1)}                (5) 

G(k) =   
P(k−1)CT

C P(k−1) CT + R
                                                        (6) 

P(k)  = (I − G(k)C)P(k − 1)                                          (7) 

 
 

http://206.189.223.122/wp-content/uploads/2014/12/IJIREEICE-20.pdf


IJIREEICE 
 ISSN (Online) 2321-2004 

  ISSN (Print) 2321-5526 

 

International Journal of Innovative Research in 
Electrical, Electronics, Instrumentation and Control Engineering 

 
Vol. 8, Issue 6, June 2020 

 

Copyright to IJIREEICE                                                 DOI  10.17148/IJIREEICE.2020.8623                                                             105 

In the above equations, X is state variable vector, U is control variable vector, Y is measurement variable vector, A is 

state transition matrix, B is control matrix, C is measurement matrix, W is state noise matrix, V is measurement noise 

matrix, R is sensor covariance matrix(measurement noise matrix),G is Kalman gain matrix, P is process covariance 

matrix, I is identity matrix, Q is process noise covariance matrix. 

In order to achieve sensor data fusion the above equations are converted into a flow-chart.   

 

III. DATA SIMULATION AND FUSION 

 

The five sensor data namely VOR, SSR, GPS, DVOR and DME is simulated and used as input to the multidimensional 

Kalman filter written in Mathematica-11 in the following manner: 

 

1. VOR  data: 

Initial azimuth  = 20 deg 

Error in measurement = 20 deg 

Initial error  = 18 deg 

True azimuth for 10 iterations = (0,36,72,108,144,180,216,252,288,324) deg 

Measured azimuth for 10 iterations (Simulated: Error taken as ±50) = (-8,31,82,116,141,179,221,258,278,329) deg 

 

2. SSR data: 

Initial altitude  = 100 m 

Error in measurement = 50 m 

Initial error  = 50 m 

True altitude for 10 iterations = (0,200,400,600,800,1000,1200,1400,1600,1800) m 

Measured altitude for 10 iterations (Simulated: Error taken as ± 100 units ) = 

(3,129,370,544,780,1072,1238,1348,1617,1875) 

 

3. GPS data: 

Initial altitude  = 1208430m 

Error in measurement = 450 m 

Initial error  = 10,000 m 

True altitude for 10 iterations = 1208445 m (Taken as constant) 

Measured altitude for 10 iterations (Simulated: Error taken as ±  450units)=  

(1208350,1208630,1208510,1208220,1208410,1208530,1208010,                                           

 1208500,1208410,1208860) m 

 

4. DVOR  data: 

Initial azimuth  10 deg 

Error in measurement = 10 deg  

Initial error  = 10 deg 

True azimuth for 10 iterations =         (0,36,72,108,144,180,216,252,288,324) deg 

Measured azimuth for 10 iterations (Simulated: Error taken as ±30)=(-3, 40, 70, 110, 149, 175, 220, 257, 284, 326) deg 

 

5. DME  data: 

Initial distance  16 NM 

Error in measurement = 16 NM 

Initial error = 15 NM 

True distance for 10 iterations = (0, 20, 40, 60, 80, 100, 120, 140, 160, 180)NM 

Measured distance for 10 iterations (Simulated: Error taken as ±10NM  )=(-4, 27, 45, 55, 75, 108, 128, 145, 168, 175) 

NM 

The above data from five sensors namely VOR, SSR, GPS, DVOR and DME   is converted into matrix/vector form to   

give as input to multi dimensional Kalman filter as follows:           

i) The initial state vector X(0) = {{20},{100},{1208430},{10},{16}}                   

ii) The initial error co-variance matrix P(0)=  {{18, 0, 0, 0, 0}, {0, 50, 0, 0, 0}, {0, 0, 10 000, 0, 0}, 
{0, 0, 0, 10, 0}, {0, 0, 0, 0, 15}} 

iii) The process noise covariance matrix Q is ignored for the purpose of ease of calculation. Similarly V and W 

matrices are also ignored. 

iv) The measurement noise co-variance matrix R =  {{20, 0, 0, 0, 0}, {0, 50, 0, 0, 0}, {0, 0, 450, 0, 0}, 
{0, 0, 0, 10, 0}, {0, 0, 0, 0, 16}} 
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v) The connection matrices   

H= {{1, 0, 0, 0, 0},{0, 1, 0, 0, 0},{0, 0, 1, 0, 0},{0, 0, 0, 1, 0},{0, 0, 0, 0, 1}} 

 

I1= {{1, 0, 0, 0, 0},{0, 1, 0, 0, 0},{0, 0, 1, 0, 0},{0, 0, 0, 1, 0},{0, 0, 0, 0, 1}} 

C1= {{1, 0, 0, 0, 0},{0, 1, 0, 0, 0},{0, 0, 1, 0, 0},{0, 0, 0, 1, 0},{0, 0, 0, 0, 1}} 

 

vi) The state transition matrix A = {{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, 
{0, 0, 0, 1, 0}, {0, 0, 0, 0, 1}} as all five state variables are uncorrelated. B and U matrices are zero as there are no control 

variables in this case. 

vii) Matrix representing actual values of VOR, SSR, GPS, DVOR, DME for 10 iterations  T = 

{{0, 0, 1208 445, 0, 0},{36, 200, 1208 445, 36, 20}, 

{72, 400, 1208 445, 72, 40},{108, 600, 1208 445, 108, 60}, 

{144, 800, 1208 445, 144, 80},{180, 1000, 1208 445, 180, 100}, 

{216, 1200, 1208 445, 216, 120},{252, 1400, 1 208 445, 252, 140}, 

{288, 1600, 1208 445, 288, 160},{324, 1800, 1 208 445, 324, 180}} 

 

viii) Matrix representing measured values of VOR, SSR, GPS, DVOR & DME for 10 iterations Z=  {{-8, 3, 1 208 

350,-3,-4},{31, 129, 1 208 630, 40, 27}, 

{82, 370, 1 208 510, 70, 45},{116, 544, 1 208 220, 110, 55}, 

{141, 780, 1 208 410, 149, 75},{179, 1072, 1 208 530, 175, 108}, 

{221, 1238, 1 208 010, 220, 128},{258, 1348, 1 208 500, 257, 145}, 

{278, 1617, 1 208 410, 284, 168},{329, 1874, 1 208 060, 326, 175}} 

 

IV. RESULTS AND DISCUSSION 

 

The data obtained above from simulation of VOR, SSR, GPS, DVOR and DME vectors /matrices is applied to a multi-

dimensional Kalman Filter algorithm for which the program is written in Mathematica-11, to get kalman gain 

G(k),expected value X(k) and error co-variance matrix P(k) is given below, for 10 iterations. 

Multi dimensional kalman filter output: 

1) Expected value X(k): 

  { 1. {{6.74}, {51.50}, {1208350}, {3.50}, {6.32}}}, 

    2. {{14.53}, {77.33}, {1208490}, {15.67}, {13.06}}}, 

    3. {{30.95}, {150.50}, {1208500}, {29.25}, {20.92}}}, 

    4. {{47.59}, {229.2}, {1208430}, {45.4}, {27.64}}}  

    5. {{62.87}, {321.0}, {1208420}, {62.67}, {35.45}}}, 

    6. {{79.20}, {428.29}, {1208440}, {78.71}, {45.72}}}, 

    7. {{96.68}, {529.5}, {1208380}, {96.38}, {55.92}}}, 

    8. {{114.4}, {620.4}, {1208400}, {114.2}, {65.74}}}, 

    9. {{130.57}, {720.1}, {1208400}, {131.2}, {75.9}}}, 

  10. {{148.2}, {825.0}, {1208360}, {148.9}, {84.86}}}} 

  

2) Error in Expected value P(k): 

 { {1. {{9.47, 0, 0, 0, 0}, {0, 25.0, 0, 0, 0}, {0, 0, 430.6, 0, 0}, {0, 0,     0, 5, 0},{0, 0, 0, 0, 7.74}}},   

  {2. {{6.43, 0, 0, 0, 0}, {0, 16.67, 0, 0, 0}, {0, 0, 220.0, 0, 0}, {0, 0, 0, 3.33, 0},{0, 0, 0, 0, 5.21}}}, 

  {3. {{4.86, 0, 0, 0, 0}, {0, 12.5, 0, 0, 0}, {0, 0, 147.78, 0, 0}, {0, 0, 0, 2.5, 0},{0, 0, 0, 0, 3.93}}}, 

  {4. {{3.91, 0, 0, 0, 0}, {0, 10.0, 0, 0, 0}, {0, 0, 111.25, 0, 0}, {0, 0, 0, 2, 0},{0, 0, 0, 0, 3.15}}}, 

   {5. {{3.27, 0, 0, 0, 0}, {0, 8.33, 0, 0, 0}, {0, 0, 89.2, 0, 0}, {0, 0, 0, 1.67, 0},{0, 0, 0, 0, 2.64}}}, 

  {6. {{2.81, 0, 0, 0, 0}, {0, 7.14, 0, 0, 0}, {0, 0, 74.44, 0, 0}, {0, 0, 0, 1.43, 0},{0, 0, 0, 0, 2.26}}}, 

  {7. {{2.47, 0, 0, 0, 0}, {0, 6.25, 0, 0, 0}, {0, 0, 63.88, 0, 0}, {0, 0, 0, 1.25, 0},{0, 0, 0, 0, 1.98}}}, 

  {8. {{2.2, 0, 0, 0, 0}, {0, 5.56, 0, 0, 0}, {0, 0, 55.9, 0, 0}, {0, 0, 0, 1.11, 0},{0, 0, 0, 0, 1.76}}},  

  {9. {{1.98, 0, 0, 0, 0}, {0, 5.0, 0, 0, 0}, {0, 0, 49.76, 0, 0}, {0, 0, 0, 1, 0},{0, 0, 0, 0, 1.59}}}, 

  {10. {{1.8, 0, 0, 0, 0}, {0, 4.55, 0, 0, 0}, {0, 0, 44.8, 0, 0}, {0, 0, 0, 0.91, 0},{0, 0, 0, 0, 1.45}}}} 

 

3) Kalman Gain G(k): 

 { {1. {{0.474, 0, 0, 0, 0}, {0, 0.5, 0, 0, 0}, {0, 0, 0.957, 0, 0}, {0, 0,     0, 0.5, 0},{0, 0, 0, 0, 0.484}}},   

  {2. {{0.321, 0, 0, 0, 0}, {0, 0.333, 0, 0, 0}, {0, 0, 0.489, 0, 0}, {0, 0, 0, 0.333, 0},{0, 0, 0, 0, 0.326}}}, 

  {3. {{0.243, 0, 0, 0, 0}, {0, 0.25, 0, 0, 0}, {0, 0, 0.328, 0, 0}, {0, 0, 0, 0.25, 0},{0, 0, 0, 0, 0.246}}}, 

  {4. {{0.196, 0, 0, 0, 0}, {0, 0.2, 0, 0, 0}, {0, 0, 0.247, 0, 0}, {0, 0, 0, 0.2, 0},{0, 0, 0, 0, 0.197}}}, 
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  {5. {{0.164, 0, 0, 0, 0}, {0, 0.167, 0, 0, 0}, {0, 0, 0.198, 0, 0}, {0, 0, 0, 0.167, 0},{0, 0, 0, 0, 0.165}}}, 

  {6. {{0.141, 0, 0, 0, 0}, {0, 0.143, 0, 0, 0}, {0, 0, 0.165, 0, 0}, {0, 0, 0, 0.143, 0},{0, 0, 0, 0, 0.142}}}, 

  {7. {{0.123, 0, 0, 0, 0}, {0, 0.125, 0, 0, 0}, {0, 0, 0.142, 0, 0}, {0, 0, 0, 0.125, 0},{0, 0, 0, 0, 0.124}}}, 

  {8. {{0.110, 0, 0, 0, 0}, {0, 0.111, 0, 0, 0}, {0, 0, 0.124, 0, 0}, {0, 0, 0, 0.111, 0},{0, 0, 0, 0, 0.110}}},  

  {9. {{0.099, 0, 0, 0, 0}, {0, 0.1, 0, 0, 0}, {0, 0, 0.111, 0, 0}, {0, 0, 0, 0.1, 0},{0, 0, 0, 0, 0.099}}}, 

  {10. {{0.09, 0, 0, 0, 0}, {0, 0.091, 0, 0, 0}, {0, 0, 0.099, 0, 0}, {0, 0, 0, 0.091, 0},{0, 0, 0, 0, 0.09}}}} 

 

Perusal of the vector kalman filter output shows that the Kalman gain is reducing gradually from first iteration to the 

tenth iteration. Also observation of the error in expected value shows that the error is reduced from 9.47 to 1.8 degrees 

of azimuth in case of VOR, and the error is reduced from 25 to 4.55 in altitude in case of SSR, the error is reduced from 

430.6 to 44.8 in altitude in case of GPS, the error in azimuth from 5 to 0.91 degrees in case of DVOR and from 7.74 

NM to 1.45 NM in case of DME. The reduction in the error in expected value is achieved gradually from iteration 1 to 

iteration 10 shows that the vector/multi-dimensional kalman filter is stable and well tuned.   

 

V. CONCLUSION 

 

A system which can reduce the errors in the data from Global Positioning System(GPS), Secondary Surveillance 

Radar(SSR) and a communication navigation and surveillance system, namely Very High Frequency Omni 

Range(VOR/ DVOR) and Distance Measuring Equipment (DME) is realized, which can give better positional accuracy 

for air traffic controlling officer(ATCO), as well as to the pilot. Aircraft density is an important factor for vectoring 

aircraft in an international airport scenario. The ATCO depends heavily on SSR data as well as GPS data while 

vectoring the incoming and outgoing aircraft and if the accuracy of GPS and SSR data is increased it will be of 

immense help to the ATCO. Similarly increasing the VOR/ DVOR azimuth data accuracy is an important aspect for the 

pilot, while determining his position with reference to any en-route VOR/ DVOR or airport located VOR/ DVOR. 

Hence this system can be used both for navigation and surveillance as it integrates data received by GPS, Radar (SSR) 

and VOR/ DVOR. The system can be utilized to supplement both ground based data and satellite based data. A multi-

dimensional Kalman Filter algorithm is used with Mathematica-11 in Linux environment and it is found that there is 

significant error reduction in all the five sensors namely VOR, DVOR, SSR, GPS and DME. The design of the system 

is claimed as novel, as the system is very compact, powerful and fits into any equipment with ease, and also the entire 

list of state variables for an aircraft cannot be provided with any one sensor at normally desired levels of accuracy and 

dependability. Fused data from multiple sensors is used to overcome this problem.  The paper is ended with citation of 

the work already carried out by the author(s). However Bibliography appended the references to improve the bore site 

of the work. 

 

APPENDIX – A 

  

In the earlier works carried out [4] VOR and SSR were discussed in the appendix. In this appendix remaining 

equipment namely DVOR and DME basic principles are presented.  

A. 1. DVOR: Doppler Very High frequency Omni Range 

In the DVOR system, the carrier is amplitude modulated with 30 Hz signal and is radiated from an omni directional 

Antenna. This provides the reference signal in the system. The direction dependent signal is generated in space by 

switching the upper and lower side bands of carrier amplitude modulated by 9960 Hz between 48 antennas mounted in 

a circle at a rate of 30Hz. As the frequency deviation of the FM signal specified for VOR is +/_ 480 Hz and the time 

period for one rotation is 1/30 of a second. The resulting diameter of the circle is 13.5 m at 115 MHz. the aircraft 

receiver therefore sees a Doppler shift of the side band frequencies deviating at +/_ 480 Hz 30 times in a second.  The 

signal is radiated anti-clockwise since the FM and AM signals have changed wrt the conventional VOR. The system 

provides 160 discreet operating channels within a frequency range of 108 – 117.95 MHz. The beacon output is 

normally 50W which provides a nominal operating range of 150 NM with best bearing accuracy. An optional variant 

provides a additional 50W power amplifier and combiner unit to raise the total transmitting power to 100W. 

 

A.2. DME: Distance Measuring Equipment 

The DME is a navigational system which provides slant – range distance information between the aircraft and a ground 

station. The frequency of interrogator is 1118MHz and that of transponder is 1181 MHz. the system consists of a 

transmitter-receiver (Interrogator) in the aircraft and a receiver / transmitter (transponder) at the ground station. The 

interrogator transmits interrogation pulses to the transponder which is triggered to transmit a sequence of reply pulses 

which have a predetermined time delay. The time difference between the interrogation and the reply is measured in the 

interrogator and translated into a distance measurement which is presented on a digital display in the aircraft cockpit 

and this display is continuously updated. The system provides for 252 discrete operating channels within a frequency 
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range of 962 to 1213 MHz. the transponder output is normally 1KW peak which provides an operating range of 200NM 

with an accuracy of +/_ 1NM.  
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