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Abstract: In space application, signals are transit from earth to space. Due to transition, radiation may occur. Thus, the 

probability of occurrence of Single-Cell Upsets (SCUs) or Multiple-Cell Upsets (MCUs) augments. One of the main 

causes of MCUs in space applications is high cosmic radiation. A common solution is the use of Error Correction 

Codes (ECCs). In this paper, compare the burst errors with  random bit errors in ECCs  and also a series of new low- 

redundant ECCs  has been presented .These new ECCs improve the behaviour of the well-known able to correct MCUs 

with reduced area, power, and delay. Also, these new codes maintain, or even improve, memory error coverage with 

respect to Matrix and CLC codes. Currently, faults suffered by SRAM memory systems have increased due to the 

aggressive CMOS integration density. Nevertheless, when using ECCs in space applications, they must achieve a good 

balance between error coverage and redundancy, and their encoding/decoding circuits must be efficient in terms of 

area, power, and delay. Different codes have been proposed to tolerate MCUs. A common property of these codes is the 

high redundancy introduced. FUECs codes have been designed to MCUs in space applications which allow correction 

up to 4 -bit adjacent errors. FUEC-DAEC maintains coverage best, obtained results show that the proposed scheme is 

11.438ns, 391nm², 345μw of delay, area, and power respectively. Beyond 4-bit burst errors, the performance of our 

codes decreases notably due to their low redundancy. Here introducing various random error bits to compare the burst 

error’s redundancy. And also designed DMC codes (up to 4-bit) .D-DMC maintain the low area, power, and delay of 

10.402ns, 538nm², 410μW respectively over than other DMC. Comparing these two methodologies, D-DMC has low 

delay than FUEC-DAEC but FUEC-DAEC has low area, and power than D-DMC with an improved capability of error 

correction and detection. 
 

Keywords: Error correction code (ECCs), multiple-cell upsets (MCUs), FUECs, DMCs, redundancy. 

 

I.INTRODUCTION 

 

Presently, AS CMOS technology scales down to nanoscale and memories are combined with an increasing number of 

electronic systems, the soft error rate in memory cells is rapidly increasing with a great storage capacity. Nevertheless, 

this size decreasing has also caused an augment in the memory fault rate [1], [2], [3]. With the present aggressive 

scaling, the memory cell critical charge and the energy needed to provoke a single-event upset (SEU) in storage have 

been reduced [4]. As shown by different experiments, in addition to traditional single-cell upsets (SCUs), this energy 

reduction can provoke multiple-cell upsets (MCUs), that is, simultaneous errors in more than one memory cell induced 

by a single particle hit [5]-[9]. In the case of space applications, the MCU problem must be taken into account for the 

design of the corresponding fault tolerance methods, as space is an aggressive environment subjected to the impact of 

high-energy cosmic particles [5].  
 

 
 

Fig. 1 A 4-bit-per-card memory array 
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Traditionally, Fig.1 shows error correction codes (ECCs) have been used to protect memory systems. Common ECCs 

employed to protect standard memories are single-error correction (SEC) or single-error-correction–double-error-

detection (SEC–DED) codes. SEC codes are able to correct an error in one single memory cell. SEC–DED codes can 

correct an error in one single memory cell, as well as they can detect two errors in two independent cells. In critical 

applications, such as space applications, more complex and sophisticated codes are used. For instance, Matrix code is a 

well-known code that combines Hamming codes with parity check in a matrix, allowing the correction of two bits in 

error. Recently presented, column–line–code (CLC) [20] follows a similar approach, that is, it uses extended Hamming 

codes and parity bits to correct up to two adjacent bits in error. The main problem when memory systems employ an 

ECC is the redundancy required. The extra bits added are used to detect and/or correct the possible errors occurred. 

Also, redundant bits must be added for each data word stored in memory. In this way, the amount of storage occupied 

for redundant bit scales with the memory capacity. A series of ECCs that greatly reduces the redundancy introduced, 

while maintaining, or even improving, memory error coverage. In addition, area, power, and delay overheads are also 

reduced. These new codes have been designed using the flexible unequal error control (FUEC) methodology, 

developed by Saiz-Adalid et al. , where an algorithm (and a tool) to design FUEC codes is introduced. FUEC codes are 

an improvement of the well-known unequal error control (UEC) codes. Nevertheless, the FUEC methodology can also 

find other kinds of codes. It is employed to find low redundancy codes. These novel codes are different than those 

presented in. They only share the design methodology, but with different parameters. In this way, by using the tool, 

generate the parity check matrix of an ECC in an automatic and efficient way, just defining its error detection and/or 

correction capabilities. Novel random bit errors or decimal matrix code (DMC) based on divide with respect to H and V 

is proposed to provide enhanced memory reliability. The proposed DMC utilizes XOR and hamming bit codes to detect 

errors. Hamming code has been conceived to be applied at software level. It uses addition of integer values to detect 

and correct soft errors. The results obtained have shown that this approach have a lower delay overhead over other 

codes. 

II. BASIC IDEA 

 

A. Background on ECCs for Space Applications 

Different ECCs has been traditionally applied to space missions. For instance, Berger code or the well known parity 

code has been used for detection purposes. When error correction is needed, more complex codes can be used, such as 

Hamming [13], Hadamard , Repetition , Golay , (BCH) , Reed–Solomon , Reed–Muller , multidimensional , or Matrix 

[18] codes. Hamming codes can be easily built for any word length. Also, the encoding and decoding circuits are easy 

to implement. Their main drawback is that only one bit in error can be corrected. Nevertheless, for common data word 

lengths (8, 16, 32, and 64), Hamming codes can detect some double error patterns, in addition to the SEC. Exploiting 

this feature, it is possible to systematize the detection of 2-bit adjacent errors with the same redundancy, as presented . 

In these works, different ECCs based on hamming codes is introduced. These ECCs allow the correction of single bit 

errors or the detection of 2-bit adjacent errors with the same redundancy. 

The main problem of Hadamard and Repetition codes is that they introduce a great redundancy for common data word 

lengths. This great redundancy provokes the necessity of a great memory storage capacity, which is an inconvenient for 

space applications. Golay code is able to correct up to 3-bit errors. Nevertheless, Golay code presents a redundancy of 

almost 100%. Also, this code presents a high time and power consuming ratio, as it has to execute sequentially two 

complementary sequences. Although BCH and Reed–Solomon codes can correct multiple errors, their main drawbacks 

are the great complexity and difficulty to implement them, as well as their great latency and speed. These weaknesses 

can be very problematic in space applications. Concerning Reed–Muller codes, although vastly used in critical 

applications, they present a great complexity. In this way, the overheads introduced are higher than the overheads 

introduced by Matrix or CLC codes. Multidimensional codes are a class of matrix codes that uses parity bits to detect 

and correct errors. With a low redundancy, these codes present several drawbacks. When more than two errors must be 

corrected, the code design is very complicated. Also, it is very difficult to adapt these codes to standard data word sizes. 

A better alternative are the Matrix codes based on hamming codes [18], [20]. These codes still present a great 

redundancy, but they are more cost effective than previous multiple-error correcting codes.  Design several new ECCs 

using the FUEC methodology and DMC methodology. The main characteristic of these new codes is their low 

redundancy. In order to check the behaviour of codes compared them with three types of codes. On the one hand, 

random error or MCU codes are created and compare three codes of them, as their codes present a good relationship 

between redundancy and area, power, and delay overheads. On the other hand, with Hamming-based codes due to the 

very low redundancy of these codes are also calculated. Also compare FUEC and MCU errors. 

 

B. Basics on Coding Theory 

An (n, k) binary ECC encodes a k-bit input word in an n-bit output word. The input word u = (u0, u1, . . . , uk−1) is a k-

bit vector which represents the original data. The code word b = (b0, b1, . . . , bn−1) is a vector of n bits, where the 
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(n−k) redundant bits added are called parity or code bits. b is transmitted across an unreliable channel which delivers 

the received word r = (r0, r1, . . . , rn−1). The error vector e = (e0, e1, . . . , en−1) models the error induced by the 

channel. If no error has occurred in the i th bit, i = 0; otherwise i = 1. In this way, r can be interpreted as r = 𝐛 ⊕  𝐞. 

 

 

 
Fig. 2 Encoding, channel crossing, and decoding process 

 

The parity-check matrix H (n−k)×n of a linear block code defines the code . For the encoding process, b must 

accomplish the requirement 𝐇 ·  𝐛𝑇= 0. For syndrome decoding, the syndrome is defined as 𝐬𝑇 =𝐇 ·  𝐫𝑇, and it 

exclusively depends one 𝐬𝑇 = 𝐇 ·  𝐫𝑇 =𝐇 · ( 𝐛 ⊕  𝐞)𝑇 =  𝐇 ·  𝐛𝑇  ⊕  𝐇 ·  𝐞 𝑇 = 𝐇 ·  𝐞 𝑇 . 

There must be a different s for each correctable e. If s = 0, we can assume that e = 0. Therefore, r is correct. Otherwise, 

an error has occurred. Syndrome decoding is performed by addressing a lookup table that relates each s with the 

decoded error vector ˆe. The decoded code word ˆb is calculated as ˆb = r  ⊕  ˆe. From ˆb, it is easy to obtain ˆu just 

discarding the parity bits. If the fault hypothesis employed to design the ECC is consistent with the channel behaviour, 

ˆu and u must be equal with a very high probability. 

 

C. Error Models 

In coding theory [12], the term random error commonly refers to one or more bits in error, distributed randomly in the 

encoded word (data bits plus code bits generated by the ECC). Random errors can be single (only one bit affected) or 

multiple. Single errors are the simplest ones, as they only affect a single memory cell. They are commonly produced by 

SEUs (in random access memories) or single-event transients (in combinational logic). 

Multiple errors mainly manifest as bursts. We can define a burst error as a multiple error that spans l bits in a word, i.e., 

a group of contiguous bits where, at least, the first and the last bits are in error. The separation l is known as burst 

length. Notice that adjacent errors are a particular type of burst errors where all the erroneous bits are contiguous. The 

main physical causes of a burst error in the context of RAM memories are diverse: high energy cosmic particles that hit 

some neighbour cells, crosstalk between adjacent cells, etc [2]. 

 

D. Hamming Codes 

Hamming codes are able to correct single-bit errors with the lowest redundancy. For example, the parity-check matrix 

for the Hamming (7, 4), i.e., n = 7 and k = 4, is shown in the following equation:  

 
 

It is easy to deduce the encoding and decoding operations.         

The encoding formulas are shown in Table I. In the same way, it is also possible to obtain the syndrome decoding 

formulas from parity check matrix.  

 

TABLE I  ENCODING FORMULAS FOR THE HAMMING (7, 4) CODE 

 

b₀ b₁ b₂ b₃ b₄ b₅ b₆ Encoding 

formulas 
  u₀  u₁ u₂ u₃ 

1 0 1 0 1 0 1 b₀=u₀+u₁+u₃ 

0 1 1 0 0 1 1 b₁=u₀+u₂+u₃ 

0 0 0 1 1 1 1 b₂=u₁+u₁+u₃ 
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Table II shows the expressions obtained to calculate the syndrome bits for the Hamming (7, 4) code. 

TABLE II  SYNDROME BITS FOR THE HAMMING (7, 4) CODE 

 

r₀ r₁ r₂ r₃ r₄ r₅ r₆ Syndrome 

bits 
  u₀  u₁ u₂ u₃ 

1 0 1 0 1 0 1 s₀=r₀+r₁+r₃ 

0 1 1 0 0 1 1 s₁=r₀+r₂+r₃ 

0 0 0 1 1 1 1 s₂=r₁+r₁+r₃ 

 

   

If an error occurs, the syndrome bits will locate the erroneous bit. A lookup table (implemented, for example, using a 

binary decoder) selects the erroneous bit. Applying the “exclusive-or” operation, the output of the lookup table correct 

the erroneous bit. For common word lengths, such as 8, 16, 32, and 64 bits, there exist (12, 8), (21, 16), (38, 32), and 

(71, 64) Hamming codes, respectively. As it can be seen, redundancy decreases with longer data words. For instance, 

the (12, 8) Hamming code presents a 50% of redundancy, whereas the (71, 64) Hamming code introduces about 11% of 

redundancy. 

Hamming codes can be extended to correct single errors and detect double random errors. These codes are known as 

SEC–DED extended Hamming codes [13]. These codes need an additional parity bit to achieve the double-error 

detection. It is calculated as the even parity for the whole encoded word. In this way, and just adding an extra bit b7, the 

Hamming SEC code (7, 4) shown previously converts into an extended Hamming SEC–DED code (8, 4). b7 can be 

obtained as follows: 

 

b7 = b0 ⊕ b1 ⊕ b2 ⊕ b3 ⊕b4 ⊕b5 ⊕ b6.  

 

The decoding process checks two conditions: 

1) The parity of the whole received word. 

2) The syndrome bits, which are calculated as in the Hamming code.  

 

There exist also (13, 8), (22, 16), (39, 32), and (72, 64) SEC–DED extended Hamming codes. As in the SEC codes, 

redundancy decreases with higher data word lengths. 

  

I.  METHODOLOGY AND PROCEDURE 

 

A. Existing System 

As previously, Matrix and CLC codes have been designed to tolerate MCUs [18], [20] a critical concern in space 

applications. Combining Hamming codes and parity checks, Matrix codes form a 2-D scheme for correcting and 

detecting some patterns of MCUs. In Fig. 3, where Xi are the data bits, Ci are the horizontal check bits (calculated as a 

Hamming code), and Pi are the column parity bits (even parity). 

 

 
Fig. 3 Layout of a 16-bit data word for the (32, 16) Matrix code 
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The basic behaviour of this Matrix code is as follows. The primary data input (Xi ) is divided into groups of several 

bits. This division is in groups of 4 bits. Each group is codified by a (7, 4) Hamming code (Ci ). Last, a set of vertical 

parity bits (Pi ) completes the matrix.  

 
Fig. 4 Layout of a 16-bit data word for the (40, 16) CLC 

 

The Matrix code implemented  better correction and detection performance than an extended Hamming code, as it is 

able to correct all single errors and to correct or to detect all 2-bit burst errors. Nevertheless, this Matrix code presents a 

higher redundancy than an extended Hamming code. In this way, memory required for code bits is increased, and also, 

area, energy, and delay overheads. 

Recently presented, CLC code is another matrix code proposed to be used in space applications. The layout is 

employed for the implementation of this code is shown in Figure.4, where Xi is the primary data input, divided into 

groups of 4 bits. Each group is codified by an SEC–DED (8, 4) extended Hamming code (Ci and Pai ). Finally, a set of 

vertical parity bits (Pi ) form the matrix. As just commented, and unlike the Matrix code, CLC uses an Extended 

Hamming code, allowing the correction of all single and 2-bit burst errors. Nevertheless, CLC introduces a higher 

number of redundant bits, provoking a greater area, power, and delay overheads, and reducing the available memory for 

the payload.On the other hand, Saiz-Adalid et al.  Introduce an SEC–double-adjacent error detection (SEC–DAED) 

code with a very low redundancy. This code is able to correct all single errors or to detect all double adjacent errors in a 

16-bit data word with only five redundant bits. Fig. 5, shows the data word layout of this code, where Ci are the code 

bits, and Xi are the data bits. 

 

 
Fig. 5 Layout of a 16-bit data word for the (21, 16) SEC–DAED 

 

On the contrary, Sanchez-Macian et al. present a different approach to generate Hamming-based ECCs. In this case, 

select an SEC–DAED code with the same coverage characteristics, as well as the same redundancy of the SEC–DAED 

code. The main difference is the code layout, as shown in Fig. 6. 

 

 
Fig. 6 Layout of a 16-bit data word for the (21, 16) SEC–DAED 

 

To obtain the value of the different Ci bits, the parity-check matrix of these two SEC–DAED codes respectively. 

 

B. Proposed System 

The proposed method focuses on identifying of burst errors and random errors. The main indications are adjacent errors 

of 2-to 4-bit length and random errors of 2- to 4-bit length of burst and random errors respectively. 

 

Flexible Unequal Error Control: This methodology was developed to obtain FUEC codes. However, it can be 

generalized to find any kind of codes. This methodology is based on formulating the problem as a Boolean 

Satisfiability problem. An algorithm developed by the authors is employed to solve it and to obtain a parity-check 

matrix, which defines the code to be designed. After defining the values of n and k for the code, the first step is the 

selection of error patterns to be corrected and detected. For instance, single errors are represented with error vectors (. . 

. 1 . . .), and error vectors for double random errors show the pattern (. . . 1 . . . 1 . . .), where 1’s represent the bits in 

error, and the dots represent the correct bits. The next step is to find the parity-check matrix H, where E+ represents the 

set of error vectors to be corrected, and E∆ is the set of error vectors to be detected. That is, each correctable error must 

generate a different syndrome H · 

eᵀi ≠ H · eᵀj ; ⱯⱯei , e j Ԑ E+|ei _= ej . 
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In addition, each detectable error must generate a syndrome which is different to all the syndromes generated by the 

correctable errors 

H · eᵀi ≠ H · eᵀj ; Ɐei Ԑ E∆, e j Ԑ E+. 

However, several detectable errors may have the same syndrome. To find the matrix, a recursive backtracking 

algorithm is used. It checks partial matrices and adds a new column only if the previous matrix satisfies the 

requirements. In this way, the algorithm starts with an empty partial_H matrix. New columns, with n–k rows, are 

added, and the new partial matrices are checked recursively. The added columns must be nonzero, so there are 2n−k–1 

combinations for each column. The complete execution of the algorithm is commonly unfeasible. Nevertheless, the first 

solutions are usually found quickly, if the code exists. Once selected the H matrix, it is easy to determine the logic 

equations to calculate each parity and syndrome bit, as well as the syndrome lookup table. They are required for the 

encoder and decoder implementation. In addition, we can apply two different optimization criteria. If we want to 

decrease the delay of the encoders and decoders, we have to reduce the number of 1’s in those rows with the highest 

number of 1’s of the parity-check matrix. In the case of area reduction, the total number of 1’s in the parity-check 

matrix must be reduced. 

 

 FUEC Methodology: By using the FUEC methodology [1], have been able to design several codes that improve the 

coverage and/or the redundancy of the different codes presented previously (Matrix, CLC, and both SEC–DAED 

codes). The layout of our codes is presented in Figure.7, where Ci are the code bits and Xi are the data bits. Using our 

algorithm, have found a code [call it FUEC–double adjacent error correction (DAEC)] that can correct an error in a 

single bit, or an error in two adjacent bits, or it can detect one 3-bit burst error or one 4-bit burst error.  

 

 
Fig. 7 Layout of a 16-bit data word for the FUEC codes 

 

FUEC–DAEC needs only seven code bits for a 16-bit data word. Figure.8, shows the parity-check matrix H for this 

code, where Ci are the code bits and Xi are the primary data bits. 

 

 
Fig. 8 Parity-check matrix H for the (23, 16) FUEC–DAEC code 

 

Once H has been obtained, it is very easy to design the encoder/decoder circuitry. For example, the formulas to 

calculate the code bits for the FUEC–DAEC code are 

 

C₀ = X₀ ⊕ X₄ ⊕ X₇ ⊕ X₈ ⊕ X₁₁ ⊕ X₁₂ ⊕ X₁₃ 

C₁ = X₁ ⊕ X₃ ⊕ X₅ ⊕ X₇ ⊕ X₉ ⊕ X₁₀ ⊕ X₁₁ ⊕ X₁₄ 

C₂ = X₀ ⊕ X₂ ⊕ X₆ ⊕ X₇ ⊕ X₉ ⊕ X₁₂ ⊕ X₁₄ ⊕ X₁₅ 

C₃ = X₁ ⊕ X₄ ⊕ X₈ ⊕ X₉ ⊕ X₁₂ 

C₄ = X₀ ⊕ X₃ ⊕ X₄ ⊕ X₇ ⊕ X₁₂ ⊕ X₁₃ ⊕ X₁₅ 

C₅ = X₁ ⊕ X₂ ⊕ X₅ ⊕ X₉ ⊕ X₁₀ ⊕ X₁₂ ⊕ X₁₄ 

C₆ = X₂ ⊕ X₃ ⊕ X₆ ⊕ X₈ ⊕ X₁₀ ⊕ X₁₁ ⊕ X₁₃ ⊕ X₁₅ 

 

On the other hand, the syndrome formulas that can be obtained from H to check if an error has occurred are 

S₀ = C₀ ⊕X₀ ⊕ X₄ ⊕ X₇ ⊕ X₈ ⊕ X₁₁ ⊕ X₁₂ ⊕ X₁₃ 

S₁ = C₁ ⊕ X₁ ⊕ X₃ ⊕ X₅ ⊕ X₇ ⊕ X₉ ⊕ X₁₀ ⊕ X₁₁ ⊕ X₁₄ 

S₂ = C₂ ⊕ X₀ ⊕ X₂ ⊕ X₆ ⊕ X₇ ⊕ X₉ ⊕ X₁₂ ⊕ X₁₄ ⊕ X₁₅ 

S₃ = C₃ ⊕ X₁ ⊕ X₄ ⊕ X₈ ⊕ X₉ ⊕ X₁₂ 

S₄ = C₄ ⊕ X₀ ⊕ X₃ ⊕ X₄ ⊕ X₇ ⊕ X₁₂ ⊕ X₁₃ ⊕ X₁₅ 

S₅ = C₅ ⊕ X₁ ⊕ X₂ ⊕ X₅ ⊕ X₉ ⊕ X₁₀ ⊕ X₁₂ ⊕ X₁₄ 

S₆ = C₆ ⊕ X₂ ⊕ X₃ ⊕ X₆ ⊕ X₈ ⊕ X₁₀ ⊕ X₁₁ ⊕ X₁₃ ⊕ X₁₅ 
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Our second proposal, called FUEC–triple adjacent error correction (TAEC), is able to correct an error in a single bit, or 

an error in two adjacent bits (2-bit burst errors) or a 3-bit burst error, or it can detect a 4-bit burst error. This is possible 

by adding one more code bit. In this case, for a 16-bit data word, the FUEC–TAEC code needs eight code bits. The 

parity-check matrix H for this code is presented in Fig. 9.As in the case of the FUEC–DAEC, Ci are the code bits and 

Xi are the primary data bits. Similarly, from H it is very easy to design the encoder/decoder circuitry. 

 
Fig. 9 Parity-check matrix H for the (24, 16) FUEC–TAEC code 

 

Finally, FUEC–quadruple adjacent error correction (QUAEC) is the last code design. This code is able to correct an 

error in a single bit, or an error in two adjacent bits (2-bit burst errors) or a 3-bit burst error or a 4-bit burst error. This 

can be done by using only nine code bits. The parity-check matrix H for this code is shown in Fig. 10. As in the 

previous codes, Ci are the code bits and Xi are the primary data bits.  

 

 
Fig. 10 Parity-check matrix H for the (25, 16) FUEC–QUAEC code 

 

A parity-check matrix optimized to achieve the lowest delay for our three codes, that is, with a reduced number of 1’s 

in the rows with the highest number of 1’s. 

It is also remarkable that the names FUEC-_AEC only indicate that they have been designed using the FUEC 

methodology. The codes presented here must not been confused with the FUEC codes from, an improvement of UEC 

codes. 

 

Decimal Matrix Code: The proposed schematic of memory is depicted in Fig. 11. First, during the encoding (write) 

process, information bits D are fed to the DMC encoder, and then the horizontal redundant bits H and vertical 

redundant bits V are obtained from the DMC encoder. When the encoding process is completed, the obtained DMC 

codeword is stored in the memory. If MCUs occur in the memory, these errors can be corrected in the decoding (read) 

process.  

 

 
Fig .11 Proposed schematic for DMC 

 

In the divide-symbol and arrange-matrix ideas are performed, i.e., the N-bit word is divided into k symbols of m bits (N 

= k × m), and these symbols are arranged in a k₁ × k₂ 2-D matrix (k = k₁ × k₂, where the values of k₁ and k₂ represent the 
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numbers of rows and columns in the logical matrix respectively). Second, the horizontal redundant bits H are produced 

by performing hamming codes and XORs gates. Third, the vertical redundant bits V are obtained by binary operation 

among the bits per column. It should be noted that both divide-symbol and arrange-matrix are implemented in logical 

instead of in physical. Therefore, the proposed DMC does not require changing the physical structure of the memory. 

To explain the proposed DMC scheme, take a 16-bit word as an example, as shown in Fig. 12. The cells from D₀ to D₁₆ 

are information bits. H₀–H₁₁ are horizontal check bits; V₀ through V₇ are vertical check bits.  

D₇ D₆  D₅  D₄  D₃  D₂ D₁ D₀  H₅ H₄ H₃ H₂ H₁ H₀ 

D₁₅ D₁₄ D₁₃ D₁₂ D₁₁ D₁₀ D₉ D₈ H₁₁ H₁₀ H₉ H₈ H₇ H₆ 

V₀ V₁  V₂   V₃  V₄ V₅  V₆ V₇ 

 

Fig. 12 16-bits DMC logical organization 

 

The horizontal redundant bits ‘H’ can be obtained by applying hamming (7, 4) code in TABLE-I as follows: 

H₀ = D₀⊕ D₁⊕ D₃ 

H₁=D₀⊕D₂⊕D₃ 

H₂=D₁⊕D₂⊕D₃ 

H₃=D₄⊕D₅⊕D₇ 

H₄=D₄⊕D₆⊕D₇ 

H₅=D₅⊕D₆⊕D₇ 

H₆=D₈⊕D₉⊕D₁₁ 

H₇=D₈⊕D₁₀⊕D₁₁ 

H₈=D₉⊕D₁₀⊕D₁₁ 

H₉=D₁₂⊕D₁₃⊕D₁₅ 

H₁₀= D₁₂⊕D₁₄⊕D₁₅ 

H₁₁= D₁₃⊕D₁₄⊕D₁₅ 

 

When mode signal and enable signal is high, the H and V redundant bits are calculated. Mode signal become 1 then 

only operation take place. Horizontal redundant bits are occupied as H₂H₁H₀, H₅H₄H₃, H₈H₇H₆, and H₁₁H₁₀H₉. Random 

errors detect the MCU bits and correct it. 

 

For the vertical redundant bits ‘V’, we have 

V₀= D₀ ⊕D₈ 

V₁ = D₁ ⊕D₉ 

 V₂ = D₂ ⊕ D₁₀ 

V₃ = D₃ ⊕ D₁₁ 

V₄ = D₄ ⊕ D₁₂ 

V₅ = D₅ ⊕ D₁₃ 

V₆= D₆ ⊕D₁₄ 

V₇ = D₇ ⊕ D₁₅ 

 

 The encoding can be performed by decimal and binary hamming operation codes. The encoder that computes the 

redundant bits using multibit of hamming codes and XOR gates is shown in Fig. 13. In this Fig. 13, H₁₁ − H₀ are 

horizontal redundant bits, V₇ − V₀ are vertical redundant bits, and the remaining bits U₁₅ − U₀ are the information bits 

which are directly copied from D₁₅ to D₀.  

 
Fig. 13 16-bit DMC encoder structure using hamming codes and XOR gates 
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The proposed DMC decoder is depicted in Fig.14, which is made up of the following submodules, and each executes a 

specific task in the decoding process: syndrome calculator, error locator, and error corrector.  

It can be observed from this Fig. 14, that the redundant bits must be recomputed from the received information bits D′. 

From Fig.14, it can be observed that the DMC encoder is also reused for obtaining the syndrome bits in DMC decoder. 

 
Fig .14 16-bit DMC decoder structure 

 

Besides, this figure also shows the proposed decoder with an enable signal En for deciding whether the encoder needs 

to be a part of the decoder. In other words, the En signal is used for distinguishing the encoder from the decoder, and it 

is under the control of the write and read signals in memory. Therefore, in the encoding (write) process, the DMC 

encoder is only an encoder to execute the encoding operations. However, in the decoding (read) process, this encoder is 

employed for computing the syndrome bits in the decoder. These clearly show how the area overhead of extra circuits 

can be substantially reduced. 

 

III. RESULTS AND DISCUSSION 

 

ECCs in space applications, burst errors must achieve a good balance between error coverage and redundancy, and their 

circuits must be efficient in terms of area, power, and delay. And also proposed DMC has been implemented in VHDL, 

simulated with ModelSim and tested for functionality by given various inputs. The area, power, and critical path delay 

of circuits have been obtained. ECCs in space applications, random errors or DMC must achieve a good balance 

between redundant bits, and their circuits must be efficient in terms of area, power, and delay. 

 

A. Error Coverage Evaluation 

In order to study the error coverage of the different ECCs developed a simulator that allows injecting different types of 

error. The basic scheme is shown in Fig. 15. 

 
Fig. 15 Block diagram of the fault injector simulator 

 

 This tool allows the injection of different error types. By comparing the input and output words, the simulator can 

check if the error injected leads to a right or wrong decoding. Also, the decoder circuit can activate the NRE signal 

when an error is detected but it cannot be corrected. Block diagram of the fault injector simulator. process for all errors 
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of a given size and model (i.e., random or burst), it is possible to count the number of corrected and/or detected errors 

with respect to the total number of possible errors, that is, it is possible to calculate the coverage of each ECC. 

This coverage has been calculated as 

 

Ccorrec = 
Errors_Corrected

𝐸𝑟𝑟𝑜𝑟𝑠−𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑
× 100 

Where Errors_Corrected are the number of errors corrected by the ECC, and Errors_Injected are the total amount of 

errors injected for a given burst length. 

 

 
 

Fig. 16 Correction coverage for burst errors 

 

As expected, FUEC–TAEC and FUEC–QUAEC codes present better correction coverage than Matrix, CLC, and both 

SEC–DAED codes, as they are able to correct up to 3- and 4-bit burst errors respectively. On the other hand, our 

FUEC–DAEC code can correct up to 2-bit burst errors.Nevertheless, for longer burst errors (5 bits or more), the 

correction capabilities of codes degrade more deeply than Matrix and CLC ones. This is provoked by the lower 

redundancy. 

This detection coverage is calculated as 

 

Cdetec = 
Errors_Corrected + Errors_Detected

𝐸𝑟𝑟𝑜𝑟𝑠−𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑
×100 

 

Where Errors_Detected corresponds to the number of errors not corrected but detected by the ECCs. All codes present 

a 100% detection of up to 4-bit burst errors, improving the behaviour of Matrix, CLC, and both SEC–DAED codes. As 

in the correction coverage, the percentage of detected errors in our FUEC–TAEC and FUEC–QUAEC codes degrades 

sharply for longer bursts. By contrast, FUEC–DAEC maintains coverage over 60%, near the Matrix detection 

capability. 
 

 
 

Fig. 17 Detection coverage for burst errors 
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In conclusion, codes are very efficient to tolerate burst errors of from 2- to 4-bit length. Beyond 4-bit burst errors, the 

performance of our codes decreases notably due to their low redundancy. If these errors are expected to occur, more 

powerful codes must be employed. 

 

B. Redundancy 

With respect to the code bits needed, our three codes present a very low redundancy with respect to the Matrix and 

CLC codes. Nevertheless, the lowest redundancy corresponds to both SEC–DAED codes, but this low redundancy only 

permits the correction of single errors, as can be seen from Table IV.  

 

TABLE III  NUMBER OF CODE BITS FOR A 16-BIT DATA WORD 

 

CODE NO.Code 

Bits 

%Redundancy Burst error detection & correction 

capabilities 

Matrix 16 100% CORRECTION: Single bit errors 

DETEDTION: 2-bit burst errors 

CLC 24 150% CORRECTION: Single&2- bit errors 

DETEDTION: 2-bit burst errors 

SEC-DAED[27] 5 31.25% CORRECTION: Single bit errors 

DETEDTION: 2-bit burst errors 

SEC-DAED[28] 5 31.25% CORRECTION: Single bit errors 

DETEDTION: 2-bit burst errors 

FUEC-DAEC 7 43.75% CORRECTION: Single ,2-bit errors 

DETEDTION: 3-&4--bit burst errors 

FUEC-TAEC 8 50% CORRECTION: Single,2-&3- bit errors 

DETEDTION: 4-bit burst errors 

FUEC-QUAEC 9 56.25% CORRECTION: Single ,2-,3-&4-bit errors 

DETEDTION: 4-bit burst errors 

 

Table IV shows the number of code bits introduced by each ECC, as well as the redundancy introduced with respect to 

a 16-bit data word. FUEC methodology and algorithm can be applied to longer code word sizes. Calculus of the 

redundancy has been done with 

 

Redundancy = 
No.code bits

𝑁𝑜.𝑑𝑎𝑡𝑎 𝑏𝑖𝑡𝑠
× 100. 

 

The importance of a low redundancy comes from the fact that these extra bits must be also stored in memory in order to 

check if an error has occurred. In this way, a higher redundancy means a lower storage available for data bits.  

 

 
 

Fig .18 Graphical representation of redundancy 
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As an example, if we use a 1-GB memory chip, only 512 MB are available to store data bits in the case of the Matrix 

code, requiring the remaining 512 MB to store the code bits. In the case of the CLC code, only about 410 MB are 

available to store data bits. On the other hand, in the case of the SEC–DAED codes, the available memory for data is 

about 780 MB. Following with this example, our FUEC–DAEC code allows storing about 712 MB of primary data. In 

contrast, our FUEC–TAEC and FUEC–QUAEC codes allow storing 682 and 655 MB, respectively. As it can be seen, 

the increment in the storage available is very significant, taking into account the improvement in the coverage 

properties of our three codes. Fig. 20 shows the graphical representation of redundancy. Last column of Table IV shows 

the burst error coverage of the different ECCs, a concern to have into account in space applications. MCUs mainly 

provoke 2-bit adjacent errors in earth observation satellites; although a non negligible percentage of longer burst errors 

are also presented. In deep space exploration, a higher impact of longer MCUs is expected. 

 

C. Redundant Bits 

Table V, shows the reduction in number of redundant bits for the proposed 16-bit DMC and the original 16-bit DMC. 

Coding efficiency β is used to evaluate the area overhead of memory cell 

 

β = 
redundant bits

redundant bits +information bits
 × 100 

 

If the value of β is small, the code needs lower memory cell. 

 

TABLE IV  COMPARISON OF REDUNDANT BITS 

 

 

 

 

From this table IV, proposed DMC code using hamming code and XOR gates have less coding efficiency.DMC using 

hamming code has the least β value but its correction capability is aConstant (up to 4-bits).  

 

D. Synthesis Results 

It has three codes, FUEC-DAEC, FUEC-TAEC, and FUEC-QUAEC.  Implement this code, in order to obtain area, 

power, and delay. Area occupied by the different circuits in nm². The power consumption of the different FUECs 

circuit is observed in μW. Delay introduced by the different codes in FUECs or burst errors in ns. 

 

1. Below figure 19, shows the RTL diagram of FUEC-DAEC from Xilinx software for burst error. 

 

 
 

Fig. 19 RTL diagram of FUEC-DAEC. 

 

ECC Redundant bits Total no. of 

redundant bits 

Information bits % β 

H V 

DMC(ORIGINAL) 10 8 18 16 52.94 

PROPOSED DMC 12 8 20 16 55.56 

http://206.189.223.122/wp-content/uploads/2014/12/IJIREEICE-20.pdf


IJIREEICE 
 ISSN (Online) 2321-2004 

   ISSN (Print) 2321-5526 

 

International Journal of Innovative Research in 
Electrical, Electronics, Instrumentation and Control Engineering 

 
Vol. 8, Issue 05, May 2020 

 

Copyright to IJIREEICE                                                   DOI  10.17148/IJIREEICE.2020.8507                                                          42 

In digital circuit design, register-transfer level is a design abstraction .Fig. 19 show the bit size of the input data , code 

data and clk . 

2. The design of FUEC-DAEC is implemented in VHDL and simulated with ModelSim. 

 

 
 

Fig. 20 Output of FUEC-DAEC simulation.  

Clk: 1 

Input data: 1111111111111111  

Error value: 1111111100111111 

(23,16) encoder outputs :1001110 

Adress to store data in memory: 00000101 

Output data:1111111111111111 

 

3. The below Fig. 21, show the delay, area, and power values generated from Xilinx software for FUEC-DAEC. 

 

 

 
Fig. 21 Delay, area, and power values of FUEC-DAEC. 
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Similarly, we can find area power and delay in Xilinx and simulation waveform through ModelSim for FUEC-TAEC, 

FUEC-QUAEC, D-DMC, T-DMC, Q-DMC. 

 

E. Performance Analysis 

The delay, area, and power of the new FUECs codes are obtained and the results are compared and shown in Table V. 

 

TABLE V  COMPARISON TABLE OF FUECS 
 

 

 

It can be visualized from the Table V, that the FUEC-DAEC has low area, power and delay. FUEC-DAEC is more 

efficient when comparing with other structure in area, power and delay. 

 

    

 
 

Fig. 22 Graphical representation of FUECs 

 

Nevertheless, the probability of occurrence of burst errors decreases significantly when increasing its length. Fig. 22 

show graphical representations of FUEC-DAEC, FUEC-TAEC, and FUEC-QUAEC. From this, FUEC-DAEC has low 

delay, area, and power due to an error in two adjacent bits and or it can detect one 3-bit burst error or one 4-bit burst 

error. 

 

TABLE VI  COMPARISON TABLE OF DMCS. 
 

Code  Delay  Area  Power  

D-DMC  10.402ns  538  410  

T-DMC  10.559ns  630  421  

Q-DMC  10.622ns  942  448  
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FUEC-DAEC 11.438ns 391 345 

FUEC-TAEC 15.920ns 443 369 

FUEC-QUAEC 17.027ns 445 374 
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It can be visualized from the Table VI. that the D-DMC has low area, power and delay. Fig. 23 shows graphical 

representations of D-DMC, T-DMC, and Q-DMC. From this, D-DMC has low delay, area, and power due to an error in 

two random bits and or it can detect one 3-bit random error or one 4-bit random error. 

 

    
 

 
Fig. 23 Graphical representation of DMCs 

 

From this, observe dual random errors, triple random errors and quarter random errors. And also, calculate their area, 

power and delay. Beyond 4-bit random errors the performance of code decreases due to the redundancy. Delay can be 

reduced but power and area increase due to the random error increases. So, that all errors can be corrected and detected 

at the expense of least time consumption. 

Comparing these methodologies, D-DMC has low delay than FUEC-DAEC but FUEC-DAEC has low area and power 

than D-DMC. It is mainly due to the error in random bit need more area to occupy. And also need more power than 

adjacent errors or burst errors. Codes are very efficient to tolerate burst errors of from 2- to 4-bit length. Beyond 4-bit 

burst errors, the performance of our codes decreases notably due to their low redundancy. If these errors are expected to 

occur, more powerful codes (with a higher redundancy) must be employed. 

IV.CONCLUSION 

 

In this paper, a series of new ECCs has been presented. ECC code is a very powerful technique to correct MCUs in 

memory. These new ECCs improve the behaviour of the well-known Matrix code, the recently introduced CLC code 

and different SEC–DAED codes. A characteristic of our codes is the low redundancy they introduce. This fact provokes 

a reduction in the storage needed for the code bits. In addition, the detection and correction capabilities are maintained, 

or even increased. The insertion of an ECC in memory also provokes the introduction of area, power, and delay. 

FUEC–DAEC code introduces a much lower area, delay and power overhead than the CLC and Matrix codes, while 

FUEC–TAEC code presents a similar area overhead than Matrix and CLC codes. As expected, FUEC–QUAEC code 

exhibits the highest overhead, related to its high correction and detection capabilities. Reduce memory area due to the 

low redundancy of codes. Concerning the power overhead, the trend is similar to the area. FUEC–DAEC code 
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introduces a much lower power overhead than the CLC and Matrix codes. Even, the power overhead of the FUEC–

DAEC code is similar to the SEC–DAED codes ones. FUEC–TAEC and FUEC–QUAEC codes present a power 

consumption similar or a little bigger than CLC code, but with much better error correction and detection capabilities. 

And also, we have to take into account the reduction of memory power consumption due to the low redundancy of our 

codes. With respect to the delay, FUEC–DAEC presents the fastest correction, even better than both SEC–DAED 

codes. On the contrary, FUEC–TAEC and FUEC–QUAEC codes introduce the highest correction delay, because they 

are designed to correct longer burst errors. Similarly, for random errors three codes are created D-DMC, T-DMC, and 

Q-DMC.D-DMC has lower delay, area, and power overhead than other codes in random error correction. Comparing 

these methodologies, D-DMC has low delay than D-FUEC but D-FUEC has low area and power than D-DMC. It is 

mainly due to the error in random bit need more area to occupy. And also need more power than adjacent errors or 

burst errors. Beyond 4-bit burst errors, the performance of our codes decreases notably due to their low redundancy. If 

these errors are expected to occur, more powerful ECCs must be employed. 

II. FUTURE SCOPE 
 

In future work, continue developing ECCs, decreasing area, power, and delay overheads while maintaining, or even 

increasing, the code coverage. And also focus on long burst errors, which are expected to have more and more impact 

on space systems. Comparing the random error bits and burst errors with increasing the bits size (32, 64….) which one 

have low redundancy, area, delay, and power. Also, ECCs can develop using MATLAB software. 
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