

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Vol. 7, Issue 12, December 2019

Intrusion Detection and Fail Safe Mechanism to Optimise Performance of Cloud

ER. Sagar Qayoom¹, ER. Gurjeet Kaur²

M.Tech., in CSE, SRI SAI College of Engineering & Technology, IKG Punjab Technical University, Jalandhar, Punjab¹

Assistant Professor, Department of Computer Science Engineering,

SRI SAI College of Engineering and Technology, Badhani Pathankot, Punjab²

Abstract: Cloud computing and resource provisioning is solution to different problems presented through starvation and shortage of resources. To this end, Intrusion detection plays a critical role by providing resources to clients as per requirements of clients. This paper presents study of techniques of Intrusion detection and suggests future enhancements as well. Intrusion detection categories including network, storage, data, desktop and server are discussed in detail with results and further improvement to minimize energy consumption is suggested. Optimization in Intrusion detection is achieved considering load balancing degree. Service in terms of storage is frequent since client storage requirements are in demand due to least cost. In addition, platform related requirements are also satisfied frequently. In case of failure of resources VM migration procedures are in place. This paper also put light on issues of VM migration to optimize migration time.

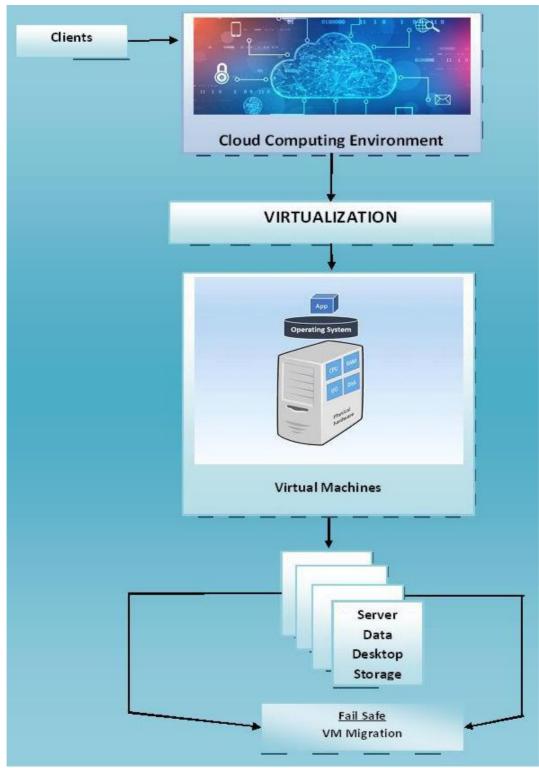
Parameters Considered: Migration time, degree of load balancing, cost, energy consumed

Techniques: Data, Storage, Server, network and desktop Intrusion detection, Pre-Copy, Post Copy and Hybrid approach under LIVE VM migration

Keywords: Intrusion detection, Migration, Migration time, Cost, degree of load balancing

I. INTRODUCTION

Energy consumption and load balancing is state of the art problem that requires attention of researchers. (Choudhary et al. 2016)To resolve problems corresponding to energy and load balancing, researchers try to optimize Intrusion detection. Process of Intrusion detection is given through figure 1. The Intrusion detection process includes multiple entities including client, service provider, datacenters, brokers, VM selection policies and finally fails safe procedures. Clients provides cloudlets to executed by virtual machines, datacenters are actually physical machines providing resources to the clients a datacenters possessing multiple resources are partitioned into distinct virtual machines. Clients get access to virtual machines. (Shakkeera and Tamils Elvan 2016)Load balancing degree is observed by broker in VM selection mechanism. User requires paying for the service it gets from cloud service provider. Both service providers and clients are bounded by service level agreement.


SLA cannot be violated but no hard and fast rules or punishment is defined in case service provider violets this SLA. To attract mass community towards cloud services, this aspect has to be improved. Never the less, researchers are focusing on increasing mass communities towards cloud services by increasing reliability and optimizing services through fault tolerance strategies. Backup plan in place is critical as VM provides services to client. Loss of service and data is not affordable in this competitive era. This paper focuses on multiple aspects and organization of this paper is listed as under

Section 1 gives introduction about general entities involved within cloud, section 2 present analysis of data, server, desktop and storage Intrusion detection, section 3 gives analysis of fail-safe mechanisms, section 4 presents problems and future enhancements that could be incorporated to improve performance, section 5 presents conclusion and future scope.

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Vol. 7, Issue 12, December 2019

Fig.1: Process of Intrusion detection

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Vol. 7, Issue 12, December 2019

II. TECHNIQUES OF INTRUSION DETECTION

Research conducted by (Celesti et al. 2011; Liu and Chou 2013; Al-azez et al. 2016; Kurdi et al. 2018) discussed fault tolerance along with energy efficiency in the field of Intrusion detection. Both proactive and reactive fault tolerance strategies are paid stress upon for increasing efficiency of Intrusion detection. Intrusion detection mechanisms are discussed in detail in this section

2.1 Server Intrusion detection

This is resource based partitioning mechanism in which physical server is portioned into small virtual servers. Intrusion detection of this sought is achieved with the help of Intrusion detection software. Virtual servers obtained with the help of Intrusion detection are capable of storing multiple operating systems. It is required to handle multiple requests from clients and hence shadow cores from processor must be portioned. Thus micro portioning of physical server is required in case of server Intrusion detection. Researchers worked upon server Intrusion detection for increasing throughput is listed in table 1.

Table 1: Server Intrusion detection mechanisms					
References	Intrusion detection	Description	Future scope		
(Kommeri 2012)	Server Intrusion	Real time load is	Optimization		
	detection	applied to test energy	procedure is missing and		
		efficiency of server.	multi-layer perceptron		
		Number of virtualized	or genetic algorithm		
		servers and service play	can be accommodated		
		critical role in energy	within server Intrusion		
		achieving energy	detection		
		efficiency.	for improvement		
(Jin et al. 2016)	Server Intrusion	Load based strategy	Fail safe mechanism		
	detection	is employed to check	can also play critical		
		energy consumption	role in case virtual		
		of server. This paper	server fail.		
		concludes that load is			
		directly proportional			
		to energy consumed			
(Jin et al. 2012)	Server Intrusion	Extensive data	Optimization		
	detection	collection is done to	mechanism can be		
		be employed at	employed and its		
		server for checking	effect on server load		
		energy consumption.	can be monitored in		
		Mathematical	future work		
		formation is done for			
		analysis of server load			
(Padala 2018)	Server Intrusion	Resource	Cluster of similar		
	detection	management is	resources can be		
		employed to manage	formed for faster		
		the load on each	searching procedure.		
		resource to reduce			
		cost and energy			
		consumed.			

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Vol. 7, Issue 12, December 2019

2.2 Data Intrusion detection

Data Intrusion detection is mechanism that allows client to use and manipulates data without going in-depth into technical details to access data. This means abstraction ensuring hiding complexity is ensured through this mechanism. Data Intrusion detection mechanisms are discussed in table 2.

Table 2: data Intrusion detection mechanisms					
Reference	Intrusion detection	Description	Future Scope		
(Xu et al. 2017)	Data Intrusion detection	Encryption mechanism is employed on data stored within cloud datacenter	Data Intrusion detection is employed but redundancy in key encryption is not considered		
(Liu and Chou 2013)	Data Intrusion detection	This mechanism ensures that availability of virtual machine cannot hamper performance of cloud	Data Intrusion detection can be accommodated with bit level DE duplication to ensure better performance		
(Al-azez et al. 2016)	Data Intrusion detection	IoT related framework for optical access network to conserve energy of sensors	Distributed energy efficient protocol can be employed to conserve energy further		
(L. Silva, J. Alonso 2009)	Data Intrusion detection	Software rejuvenation is achieved with the help of data Intrusion detection	Cost constructive model can be used along with software rejuvenation to achieve accuracy in effort estimation		

2.3 Desktop Intrusion detection

This mechanism allows the application from one PC to be executed on multiple distributed machines. This increases overall throughput of the system being used. Terminal network protocol is commonly used for this purpose. In addition user can access the application from remote machine to be used as if sitting in front of that system and using that application. Table 3 gives mechanisms along with future enhancements to those mechanisms.

· · · · · · · · · · · · · · · · · · ·	Table 5. Desktop intrusion detection incentinishis					
Reference	Intrusion detection	Description	Future scope			
		Energy is conserved by the use of terminal	Energy conservation			
(Das 2013)	Desktop Intrusion	network. Resources are used but files are	mechanism including			
	detection	not copied on client machine	distributed energy			
			Green computing			
		Desktop Intrusion detection for conserving	without any fail safe			
	Desktop Intrusion	energy and increasing chances of green	mechanism lead to			
(Vashishtha et al. 2014)	detection	computing	unreliability			
(Fahimeh Farahnakian,		Desktop Intrusion detection is achieved	Convergence is poor			
Adnan Ashraf, Tapio		using terminal networking along with file	but with multi-layer			
Pahikkala, Pasi			perceptron, better			
Liljeberg, Juha Plosila,	Desktop Intrusion	green computing is achieved using	convergence can be			
Ivan Porres 2015)	detection	optimization genetic algorithm	achieved			
			Optimization is			
			missing and execution			
			of this mechanism led			
			to least classification			
			accuracy. Optimization			
			mechanism such as			
		Task scheduling to virtual machines located	MLP can enhance			
	Desktop Intrusion	at different remote computers with least	overall performance of			
(Xu et al. 2016)	detection	execution time is achieved.	task scheduling			

Table 3: Desktop	Intrusion	detection	mechanisms
------------------	-----------	-----------	------------

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Vol. 7, Issue 12, December 2019

2.4 Storage Intrusion detection

This Intrusion detection is used by mass community over network. Cloud service provider share storage and cost is encountered on pay per uses basis. Intrusion detection of storage is achieved by dividing the storage server into set of virtual machines. Intrusion detection reduces cost of the client since storage independently cost more as compared to share resources. Storage Intrusion detection is described in table 4.

Table 4: Storage	Intrusion	detection	mechanisms
ruble n blorage	masion	accection	meenamonio

Reference	Intrusion detection	Description	Future Scope
(Yang et al. 2017)	Storage Intrusion	K storage servers are	K means Clustering
	detection	employed to tackle	mechanism can be
		the demands of	used for better
		clients. Deadlock is	allocation of storage
		avoided in this case	to client
(Zhu and Zhou 2005)	Storage Intrusion	Power aware storage	Clustering
	detection	Intrusion detection	mechanism can
		mechanism conserve	improve execution
		energy by locating	time required for
		best possible server	allocation
		for clients.	
(Wang et al. 2009)	Storage Intrusion	Security of storage is	DE duplication can
	detection	ensured using this	be ensured to reduce
		mechanism	storage consumption
			further
(Wang et al. 2017)	Storage Intrusion	Storage Intrusion	Clustering ensuring
	detection	detection of this sort	reduced cost and
		ensure optimal	execution time
		storage utilization	
		and hence cost is	
		reduced	

III. VM MIGRATION

This is also critical since fail safe mechanism must be employed to ensure reliability of cloud. Breach in reliability causes mass community to divert from service provider and choose some other service provider. These fail safe mechanism is generally provided with the help of VM migration. VM migration used in different literatures is expressed in table 5.

T.1.1. C. X/X/			· · · · · · · · · · · · · · · · · · ·	future scope
I anie Stylvi	migration	strategies al	$n\sigma with$	THITING SCORE
1 4010 5. 111	maranon	stratezies ai		ruture scope

References	Туре	Description	Future scope	
(Li 2016)	Live VM migration	Both source	andShortest	distance
		destination machines	mechanism	can be
		areactive	whileincorporated	to
		migration is executed	overcome `exte	ensive
			energy utilizati	on
(Asif et al. 2015)	Pre, post and hybrid	All these mechanism		ption
	migration	are discussed and pre	while migrat	ion is
		copy approach	ishigh that	can be
		demonstrated to	bereduced by the	
		the best one	distance	Handling mechanism
(Katsipoulakis et al.	Adaptive live	VMSource	andClustering	and

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Vol. 7, Issue 12, December 2019

2013)	migration	destination machines distance	based
		are up while storage mechanism	can
		and process issubstantially	reduce
		migrated migration tim	ne
(Sekhar et al. 2013)	Cost efficient	liveDuring migrationBy	applying
	VM migration	cost is preserved and redundancy	handling
		less energy ismechanism,	cost can
		consumed be further re-	duced

IV. PROBLEM DEFINITION

During the last few years, there has been a sharp increase in the number of cloud-based computer attacks. This has led many researchers to study this field in great depth in order to develop novel methods that are capable of eliminating this threat from today's computer clouds. It describes various attacks like DDOS and spoofing. The DDOS attack generates a large volume of flow that attacks the victim and victim is unable to defend because the detection of attack is late. Thus this leads to data loss and late packet delivery ratio. In existing technique PMNIDS algorithm is used to detect attack by using Queue based techniques. The TPR is low and FPR is more with this technique which is has to be optimized.

OBJECTIVE OF STUDY

The proposed work deals with the mobility of nodes along with the static nodes to reduce the identity based attacks in the cloud like clouds. The objectives are listed as follows

- \checkmark To study the clustering techniques for data mining.
- \checkmark To detect normal and abnormal data in intrusion detection systems.
- ✓ To identify the false positive, false negative, and Accuracy generated using hierarchical algorithm;
- ✓ Comparison of the results of Feature detector and hierarchical algorithm.

V. CONCLUSION

Cloud computing is a emerging field of study providing resources with least cost to clients. Clients can access resources on pay per use basis. Effective storage utilization can be achieved by accommodating better space handling procedure like deduplication with DNA encryption to enhance reliability. Cost effective procedure can attract mass community towards services offered by cloud service provider. In case of failure of service, fail safe procedure must be present within the cloud environment. This fail safe mechanism includes live VM migration. Pre and post copy approaches are commonly used fail safe mechanisms. In addition hybrid procedure in place but it is expensive. Pre copy approach can be used if processing requirements are more and post copy if storage requirements are more. Distance handling mechanism can be used in order to ensure faster allocation of virtual machine. Overall optimization, distance handling procedure and fail safe mechanism must be included with Intrusion detection increase reliability and decrease cost associated with resource utilization and increase reliability.

REFERENCES

- [1]. Al-azez ZT, Lawey AQ, El-gorashi TEH, Elmirghani JMH (2016) Energy Efficient IoT Intrusion detection Framework with Passive Optical Access Networks. ICTON 1–4
- [2]. Asif S, Shah R, Jaikar AH, Noh S (2015) A Performance Analysis of Precopy, Postcopy and Hybrid Live VM Migration Algorithms in Scientific Cloud Computing Environment. IEEE Access 229–236
- [3]. Celesti A, Tusa F, Villari M, Puliafito A (2011) An Approach to Enable Cloud Service Providers to Arrange IaaS, PaaS, and SaaS Using External Intrusion detection Infrastructures. doi: 10.1109/SERVICES.2011.92
- [4]. Choudhary A, Rana S, Matahai KJ (2016) A Critical Analysis of Energy Efficient Virtual Machine Placement Techniques and its Optimization in a Cloud Computing Environment. Procedia - Procedia Comput Sci 78:132–138. doi: 10.1016/j.procs.2016.02.022
- [5]. Das T (2013) LiteGreen : Saving Energy in Networked Desktops Using Intrusion detection
- [6]. Fahimeh Farahnakian, Adnan Ashraf, Tapio Pahikkala, Pasi Liljeberg, Juha Plosila, Ivan Porres and HT (2015) Using Ant Colony System to Consolidate VMs for Green Cloud Computing. IEEE Trans Serv Comput 184–198
- [7]. Jin Y, Wen Y, Chen Q (2016) An Empirical Investigation of the Impact of Server Intrusion detection on Energy Efficiency for Green Data. IEEE Access
- [8]. Jin Y, Wen Y, Chen Q (2012) Energy Efficiency and Server Intrusion detection in Data Centers : An Empirical Investigation. IEEE Access
- [9]. Katsipoulakis NR, Tsakalozos K, Delis A (2013) Adaptive Live VM Migration in Share-Nothing IaaS-Clouds with LiveFS. In: 2013 IEEE 5th International Conference.

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering

Vol. 7, Issue 12, December 2019

- [10]. Kommeri J (2012) Energy Efficiency of Server Intrusion detection. IEEE Access 90-95
- [11]. Kurdi HA, Alismail SM, Hassan MM (2018) LACE: A Locust-Inspired Scheduling Algorithm to Reduce Energy Consumption in Cloud Datacenters. IEEE Access 6:35435–35448. doi: 10.1109/ACCESS.2018.2839028
- [12]. L. Silva, J. Alonso and JT (2009) Using Intrusion detection to Improve Software Rejuvenation. IEEE Trans Comput 58:1525-1538
- [13]. Li Z (2016) Optimizing VM Live Migration Strategy Based On Migration Time Cost Modeling. IEEE ACCESS 99–109
- [14]. Liu CYJ, Chou CHW (2013) On improvement of cloud virtual machine availability with Intrusion detection fault tolerance mechanism. IEEE Access. doi: 10.1007/s11227-013-1045-1
- [15]. Padala PR (2018) Intrusion detection of Data Centers study on Server Energy Consumption Performance. IEEE Access
- [16]. Sekhar J, Jeba G, Nadu T (2013) Energy Efficient VM Live Migration in Cloud Data Centers. IEEE Access 2:71-75
- [17]. Shakkeera L, Tamilselvan L (2016) Energy-Aware Application Scheduling and Consolidation in Mobile Cloud Computing with Load Balancing. IEEE Access. doi: 10.1007/978-981-10-0287-8
- [18]. Vashishta V, Gupta A, Sarwar PS (2014) Green Computing : An Approach Of Saving Energy By Computer Intrusion detection . 3:103-106
- [19]. Wang C, Wang Q, Ren K, Lou WJ (2009) Ensuring Data Storage Security in Cloud Computing. Iwqos 2009 Ieee 17th Int Work Qual Serv 37– 45\n302. doi:10.1109/IWQoS.2009.5201385
- [20]. Wang J, Luo W, Liang W, Liu X, Dong X (2017) Locally Minimum Storage Regenerating Codes in Distributed Cloud Storage Systems. IEEE ACCESS 82–91
- [21]. Xu D, Fu CAI, Li G, Zou D (2017) Intrusion detection of the Encryption Card for Trust Access in Cloud Computing. IEEE Access 5:
- [22]. Xu X, Cao L, Wang X(2016) Resource pre-allocation algorithms for low-energy task scheduling of cloud computing. IEEE Access 27:457–469
 [23]. Yang T, Pen H, Li W, Yuan D, Zomaya AY (2017) An energy-efficient storage strategy for cloud datacenters based on variable k-coverage of a hypergraph. IEEE Trans Parallel Distrib Syst 28:3344–3355. doi: 10.1109/TPDS.2017.2723004
- [24]. Zhu Q, Zhou Y (2005) Power Aware Storage Cache Management. IEEE Trans Comput 54:587–602

BIOGRAPHIES

Sagar Qayoom received his B.E in CSE from SSM College of Engineering and Technology, University Of Kashmir in 2016 and pursuing M.Tech from SRI SAI College of Engineering and Technology, IKG Punjab Technical University, Jalandhar Punjab.

Gurjeet Kaur received her B.Tech degree from Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib Punjab in 2011 and received M.Tech from Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India. At present working as Assistant Professor, Department of Computer Science Engineering, SRI SAI College of Engineering and Technology, Badhani Pathankot, Punjab.