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Abstract: In a body sensor network, vital signs such as heart rate, temperature and activity can be continuously tracked 

by wearable computers and relayed by personal devices to the cloud infrastructure, for both real-time health 

management and long-term health statistics purposes. However, along with boosting smart health sensors and 

applications, there are also increasing Heart Disease Detection requirements, which indicates that the given ECG of a 

particular person is normal or abnormal (abnormality is like heart attack and arrhythmia(An arrhythmia is a problem 

with the rate or rhythm of your heartbeat.). Heart Disease Classification is a promising technology for automatic and 

accurate individual recognition, focusing on these challenges. 
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I. INTRODUCTION 
 

Body sensor networks are reshaping people's daily lives, especially in smart health applications. In a body sensor 

network, vital signs such as heart rate, temperature and activity can be continuously tracked by wearable computers and 

relayed by personal devices to the cloud infrastructure, for both real-time health management and long-term health 

statistics purposes. However, along with boosting smart health sensors and applications, there are also increasing 

security and privacy requirements, to enable confidential biomedicine solutions, protect sensitive patient data, etc. 

Biometric-based human identification is a promising technology for automatic and accurate individual recognition, 

focusing on these challenges. Leveraging the uniqueness and permanence to individuals, biometric characteristics are 

more reliable than traditional token-based and knowledge-based individual recognition methods, such as the identity 

card and the username/password pair which may be lost or stolen. Two major categories of biometrics have been 

widely studied, i.e., behavioural and physiological ones, typical examples of which include gait, voice, signature, 

fingerprint, retina and face. Among physiological biometrics, bio-potentials are emerging powerful modalities and 

playing a more and more important role in human identification, benefitting from a fast progress in ubiquitous wearable 

devices and advanced signal processing/ machine learning techniques. In this paper, we take special interest in the 

Electrocardiogram (ECG) bio-potential, which is of many attractive characteristics for human identification 

applications, including universal, easily measured, unique and permanent. Specifically, the sinus node in the heart 

modulated by both sympathetic and parasympathetic nerves repeatedly produces electrical impulses and triggers the 

heart rhythm. Then the unique electrical waves, i.e., the ECG signal, are spread throughout the body and can be easily 

acquired with the ECG electrodes, either contacting or non-contacting ones. These attractive signal characteristics and 

the unobtrusive measurement mechanism make the ECG biometric highly promising in terms of the human 

identification. Convolutional Neural Network (CNN), as one of the major deep learning algorithms, is now gaining 

tremendous attentions leveraging its powerfulness in automatically learning the intrinsic patterns from the data, which 

can both prevent time-consuming manual feature engineering and capture hidden intrinsic patterns more effectively. 

Inspired by biological process of the visual cortex, CNN consists of multiple layers, each of which owns a small neuron 

collection to process portions of the input image. These collections are tiled to introduce region overlap, and the 

process is repeated layer by layer to achieve a high level abstraction of the original image. Inspired by the observation 

that the ECG stream can be seen as a 1D-image, the project explore how to effectively apply the 1D-CNN to ECG 

biometric identification, to avoid heavy feature engineering efforts, and also let the CNN capture more hidden patterns 

from data and learn a high level abstraction. This paper propose a novel wavelet domain Multi-Resolution 

Convolutional Neural Network Approach (MCNN) for ECG biometric identification, which avoids data-dependent 

complicated heartbeat detection/ segmentation techniques and heavy manual feature engineering that are both time-

consuming and of a limited generalization ability. Specifically, it allows for blind segmentation of both normal and 

abnormal ECG streams (i.e., system can randomly select an ECG segment for user identification purpose), provides a 

multi resolution data representation in the wavelet domain to achieve richer temporal and spectral characteristics, and 

leverages the self-learning ability of CNN to automatically adapt its internal parameters (i.e., features encoded in 
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network parameters) to wavelet-domain raw data. For algorithm evaluation, a one-lead ECG configuration is chosen, 

considering it is more convenient than the multi lead ECG configuration in daily applications, and of course, it also 

poses more challenges to the identification algorithm. Moreover, to demonstrate the generalization ability of the 

proposed framework composed of blind segmentation, data representation enrichment, phase difference removal, 

parallel multi resolution feature self-learning and classification, eight diverse datasets are considered which include not 

only different electrode placement methods (chest and wrist) but also various heart health conditions (with and without 

cardiac abnormalities), which are much more challenging than other works. 

 

II. System Overview 
 

 
 

Fig.1 The system diagram of the proposed multi resolution convolutional neural network for human identification with 

blindly segmented ECG signal Notes. CNN: convolutional neural network; FM: feature map; Conv: convolution; MP: 

max pooling; C1 FM: convolutional layer 1 feature map; S1 FM: stage 1 final feature map; ID: identification; 

definitions of variables are given in the process. The system diagram of the proposed approach is shown in Figure 1, 

including pre-processing, wavelet transform, autocorrelation, component selection and parallel 1D-CNN. This section 

gives detailed description of our approach according to the signal processing. Specifically, the ECG stream is firstly 

blindly split up into signal segments with an equal length of two seconds without leveraging any heartbeat location 

information, which is not only immune to diverse morphological/beat-to-beat interval variability’s, but also tolerant to 

signal artifacts that are usually major challenges in non-blind segmentation approaches. Afterwards, the ECG segments 

are transformed to the wavelet domain which is expected to reveal more detailed time and frequency characteristics in 

multiple resolutions than the original time domain. Then the auto-correlation operation is performed to each wavelet 

component to remove the blind-segmentation-induced phase difference. Finally, based on the enriched data 

representation, a 1D-CNN is applied to each wavelet component to learn the intrinsic patterns automatically, which 

allows for parallel feature self-learning in various wavelet scales, avoiding time consuming manual feature engineering. 

The learned features redirected by the CNN internal parameters are then used to identify users on the unseen random 

ECG segments. 
 

Above process is divided into following parts 

1. ECG Signal Preprocessing 

2. Datasets 

3. Wevlet Transform 

4. Autocorrelation 

5. Parallel 1-D CNN’s 
 

A. ECG Signal Preprocessing 

The pre-processing operation includes three steps, i.e., filtering, scaling and blind-segmentation, as shown in Figure 1. 

Firstly, a 6-order Butterworth bandpass (2-50 Hz) filter is applied to each ECG recording to remove the baseline 

wander and the power line interference. Then all the recordings are scaled to be between 0 and 1 and subtracted by their 

mean to balance their contribution in the algorithm training phase, as (1-2) where ECG and ECGs are the original and 

the new ECG stream, respectively. Afterwards, the filtered ECG recording is blindly segmented to ECG windows Xi 

with an equal length where i is the window index. The window length is chosen as 2-second (720 samples) to include 

as least one heartbeat, since the typical range of heart rate is from 40 to 208 beats per minute. 
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For each recording, 500 random windows are chosen, half of which are used to train the CNN (also component 

selection step in Fig. 1) and another half for testing. A example of randomly chosen ECG windows are shown in Figure 

2, which usually include different number of heartbeats and highly different signal morphologies (either normal or 

abnormal). It is clear that the blind segmentation strategy can effectively avoid data-specific complicated heartbeat 

identification and segmentation techniques, but at the same time, also introduces a high variability to the ECG windows 

(number of heartbeats, onset of the segment, etc.) and poses a big challenge to the following data representation and 

machine learning algorithms. Automatic ECG classification is particularly useful for portable or wearable device and it 

is expected that few channel number (even single channel) would be found in these devices. And developed algorithm 

to handle small channel number of ECG. The timing of each heartbeat has been labelled for the corresponding R peak 

in the database. Hence, they can directly obtain the R-R intervals for each beat in segmentation. Nevertheless, 

numerous robust methods have already been available for R peak detection and algorithm for this is beyond the scope 

of current study. 

 
 

Fig.2 Blindly chosen ECG segments with diverse behaviors from eight normal and abnormal datasets. Amp: amplitude; 

P/Q/R/S/T: characteristic points of a normal heartbeat; QRS: central part of a heartbeat; definition of abbreviations is 

given in Table I. 
 

B. Data Sets 

TABLE I. Eight ECG Datasets 
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Eight datasets with diverse ECG behaviors have been considered including CEBSDB, WECG, FANTASIA, 

NSRDB, STDB, MITDB, AFDB, VFDB as shown in Table I and Figure 2 These datasets may be acquired by 

different lead configurations. 
 

Moreover, the first four datasets were collected from healthy or quasi-healthy participants, and last four include 

severe heart diseases such as ST depression/elevation, arrhythmia, atrial fibrillation and malignant ventricular 

ectopy. Considering these datasets were not acquired with the same sampling rate, all the ECG recordings were 

re-sampled to 360 Hz to fairly illustrate the performance. 

 

 

C. Wavelet Transform 

 

The wavelet transformation is expected to provide a richer data representation in the wavelet domain. Two examples of 

the transformed signals are given in Fig. 3 On the left part, the ECG signal is decomposed to eight details and one 

approximation. The detail 1 is extracted using the baby wavelet of the highest frequency, and the detail 8 is generated 

by the baby wavelet of the lowest frequency. 

 
Fig.3  Multi-resolution representation of two signal segments in the wavelet domain. 

 

As mentioned above, the wavelet transformation owns two advantages compared with STFT. Firstly, it overcomes the 

dilemma of resolution faced by STFT, i.e., a fixed small window results in a poor frequency resolution and a fixed 

large window causes a low temporal resolution. DWT, instead, applies windows of different sizes at different frequency 

levels. Specifically, a small window is chosen at a high frequency level to achieve a high temporal resolution such as 

detail 1, which is based on the consideration that high frequency component usually makes the signal quickly fluctuate 

and thus requires a high temporal resolution to track the signal dynamics. Moreover, a gradually extended window is 

applied to extract signal characteristics at a gradually decreasing frequency level. Take the detail 8 as an instance, the 

low frequency component makes the signal change slowly and thus a large window is applied to get a big picture of the 

signal in order to guarantee a high frequency resolution. In such a way, a time-frequency data representation of richer 

signal characteristics is obtained in the wavelet domain, taking into account different resolution requirements at 

different frequency levels. 

 

D. Autocorrelation: 

The autocorrelation operation is introduced to remove the phase difference due to blind segmentation. Fig. 4 shows 

similar outputs when applying auto-correlation to two wavelet domain signal segments given in Fig.3. 
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Fig.4 Phase different removal by auto-correlation to enable blind segmentation of ECG windows. 

 

The auto-correlation calculates the correlation of a series with its delayed copy, i.e., the similarity between series as a 

function of the time lag between them. Therefore, it can effectively discover repeating patterns in the quasi-periodic 

ECG signals even with different numbers and occurrence time of heartbeats. After removing the phase difference, the 

multi resolution data can now be fed to the parallel 1D-CNN for automatic feature learning and user identification 

purpose. 

 

E. CNN 

 

There are several key considerations behind Convolutional Neural Network, such as local connections, shared weights, 

pooling operations and dropout techniques. As shown in Fig. 1, each CNN stage is composed of two types of layers, 

i.e., the convolutional and pooling layers. The convolutional layer includes many feature maps to extract a higher level 

representation from the previous layer. The connection between a unit and a local patch in the previous layer is called 

alter bank, which performs a discrete convolution operation. So the value of each unit is actually a local weighted sum 

of the previous patch, which is then fed into a non-linear activation function to determine whether this unit (neuron) 

fires or not. A same filter bank is shared by all units within a feature map, not only to form distinguishable local motifs 

from locally correlated values, but also to invariantly detect a same pattern even appearing in different locations. A 

widely used max pooling operation is chosen here, which captures the maximum of the corresponding local patch in the 

convolutional layer of the same stage. To further regularize the large number of parameters, the dropout technique is 

introduced which randomly ignores some neurons during training. 

This operation can suppress the specialization of neighboring neurons which may result in a fragile model obverted to 

the training data (too smart in learning data), by forcing other neurons to step in and handle some more by their own (so 

they are also less dependent on the nodes they are connected to). In such a way, the network is more insensitive to the 

specific parameters of neurons (prevent neurons from co-adapting too much) and owns a better generalization ability to 

the unseen fresh data. 

 

To train the multi-layer CNN, the back propagation approach is usually used, which computes the gradient of a 

predefined objective function with respect to all the neuron parameters by applying the chain rule for derivatives. The 

gradients can be propagated backwards from the output layer to the input layer, to adjust the parameters such that the 

network can converge to a state to be able to encode the training patterns. Leveraging key ideas in CNN architecture 

establishment and training techniques mentioned above, the neuron units are well organized in hierarchical features 

maps and can provide gradually increasing level of abstraction to enable the final identification task. 
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III. Experimental Result and Discussion 

 

In this section, detailed experimental results and discussion are given according to the signal processing flow as shown 

in Fig. 1. 

1. Training Process result of ECG using CNN: 

 

 
Fig.5 Training process of parallel 1D-CNN network C 

 

The multi-scale 1D-CNN is firstly trained on the data with ground truth identify labels and then tested on the unseen 

fresh data. In the training phase, the network self-learns hierarchical features by convolutional and pooling operations 

from pairs of data representation and user label. An example of the training process is given in Fig. 5, where the top 

part shows the gradually decreasing training loss and the bottom part corresponds to the increasing training accuracy. 

The epoch size is set as 50 to balance under fitting and over fitting considerations. Actually, the network can already 

effectively learn most of the underlying patterns of the wavelet domain data and basically converges around 25 epochs. 

The learned hierarchical features encoded in the neuron connection parameters are then used to predict the user label on 

the testing data. The testing performance will be given later. It is worth noting that we have trained and tested the multi-

scale 1D-CNN model on each dataset both for five times to average the performance, consideration that the learned 

hierarchical features are of some randomness resulting from the stochastic gradient descent optimization approach. Fig. 

5 shows the training process for all five trials and interestingly we can and that they own a similar convergence speed. 

This is consistent with the theoretical study that poor local minima are rarely a problem in deep neural networks with a 

large number of parameters. Instead, the landscape of the object function is packed with a large amount of valleys 

which seems to mostly have local minima with similar values. Therefore, the randomness in SGD-based parameter 

tuning process actually often results in only small fluctuations to the convergence curve in the training process. 

 

2. CNN topology selection result for Normal and abnormal person 

 

 The proposed MCNN algorithm is evaluated on eight ECG datasets. As mentioned above, the topologies of wavelet 

operation and neural network are determined based on the testing performance over the CEBSDB dataset, and are used 

on other datasets. The testing performance in terms of the confusion matrix of all eight datasets is given in and Fig. 6 

and Fig. 7, and Corresponding identification rate is summarized in Table II. 
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Fig.6 Confusion matrix for human identification based on testing data of four normal ECG datasets 

 

TABLEII Identification rate of all datasets 

 
 

For four normal ECG datasets, the performance visualization in Fig. 6 clearly shows that the trained MCNN can 

effectively identify the human subjects (diagonal entries with a yellow color), with very little false positives or false 

negatives (non-zero off-diagonal entries). The top part of Table II also illustrates the high identification rate for these 

four normal ECG datasets, from 94.5% to 99.0%. It is worth noting that there is still a high identification rate even for 

the FANTASIA dataset with a number of subjects as high as forty. Another thing worth noting is that a dataset with 

relatively less subjects does not necessarily correspond to a higher identification rate, such as the NSRDB dataset, due 

to high variability of individual heart behaviors and blind segmentation operations. But these four datasets all 

correspond to a identification rate no less than 94.5%, and own an average identification rate of 90.5%, demonstrating 

the effectiveness of the proposed algorithm. For four abnormal ECG datasets with severe heart diseases, the confusion 

matrices in Fig. 7 show that there are slightly increased false positives and false negatives, due to a much higher 

variability of the heartbeat morphologies. As shown in Table I, there are difference kinds of heart diseases in these four 

datasets, corresponding to ST depression/elevation, arrhythmia with other 18 kinds of diseases, atrial fibrillation, 

malignant ventricular arrhythmia, respectively. Therefore, it is much more challenging to learn the underlying patterns 

of these time-varying abnormal heartbeat behaviors. The bottom part of Table II gives the identification rate for these 

four abnormal datasets, which is from 86.6% to 93.9%. The average identification rate is 93.5%, which is still an 

attractive result, considering that our user identification approach is directly performed on randomly chosen ECG 

segments using automatically learned features from raw data of ECG signal. 
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Fig. 7 Confusion matrix for human identification based on testing data of four abnormal  

ECG datasets with severe heart diseases 

 

IV. CONCLUSION 

 

In this paper, we have proposed a novel multi resolution convolutional neural network for Heart Disease Detection 

applications. Focusing on existing challenges, we have introduced blind signal processing and automatic feature 

learning techniques to effectively lower the algorithm engineering effort and also highly enhance the generalization 

ability of the algorithm. Our contributions include: 1) blindly select the signal segment for Heart Disease Detection 

purpose, which effectively avoids complicated and data-dependent signal event identification (e.g., ECG R peaks) and 

segmentation effort; 2) enrich the time-frequency representation by transforming data from the time domain to the 

wavelet domain, and remove phase difference among random-chosen signal segments by the auto-correlation approach; 

3) introduce a parallel 1D-CNN to automatically learn multi-scale feature hierarchies from the wavelet domain raw 

data. This paper is expected to demonstrate that the proposed blind signal processing and deep learning techniques can 

effectively lower the algorithm engineering effort and provide a good generalization ability, for the biometric Heart 

Disease Detection applications. 
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