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Abstract: A break through development in remote sensing is  Hyperspectral Imaging. Imaging Spectrometers, often 

referred to as hyperspectral cameras (HSCs) are used for hyperspectral imaging and they acquire images with higher 

spectral resolution than multispectral cameras. Due to low spatial resolution of HSCs, spectra measured by HSCs are 

mixtures of spectra of materials in a scene and each pixel is assumed to be a mixture of  few materials, called 

endmembers. This necessitates  unmixing which involves estimating the number of endmembers,  their spectral 

signatures and their abundances at each pixel. Various algorithms like HYSIME, VCA, DECA, NMF, N-Finder were 

introduced for hyperspectral unmixing. A sparse regression scheme based on compressive sensing is also used for  

identifying pure form of pixels of a scene. This approach reduces the number of endmembers needed to represent the 

data and provides more robust solutions. A collaborative Sparse Regression method is also developed which can be 

implemented in parallel nature and thus improves the speed of operation and accuracy. In this paper a brief study of 

various unmixing algorithms were presented along with a comparison of  their performance. 

 

Keywords: Hyperspectral Imaging, Hyperspectral Unmixing (HU), endmembers, Compressive sensing, Hysime, VCA, 

DECA, Spectral library. 

 

I. INTRODUCTION 

 

Remote Sensing is defined as the science and technology by which the characteristics of objects of interest can be 

identified, measured or analysed  without direct contact. Electromagnetic radiation which is reflected or emitted from 

an object is the usual source of remote sensing data. However any media such as gravity or magnetic fields can be 

utilized in remote sensing.. 

 

Hyperspectral images (HSI) are taken by satellites such that each pixel records an area of geographical information in 

form of electromagnetic spectral reflectance. Hyperspectral imaging sensors collect two dimensional spatial images 

over many contiguous bands of high spectral resolution covering the visible, near-infrared, and shortwave infrared 

spectral bands [18,19].Since an ordinary image takes two dimensions, an HSI requires the third dimension in order to 

store spectral data for every pixels.  
 

HSCs can be built to function in many regions of the electromagnetic spectrum.  

Hyperspectral unmixing is the decomposition of the pixel spectrum into a collection of constituent spectra, or spectral 

signatures, and their corresponding abundance fractions, occasionally termed sources, indicating the proportion of each 

endmember present in the pixel [15].  
 

Unmixing  is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental 

conditions, endmember variability, and data set size. Due to low spatial resolution of HSCs, microscopic material 

mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, 

accurate estimation requires unmixing. 
 

This paper is organized in to 4 sections. Section-II describes the basis of HSI and unmixing. Section-III introduces 

various unmixing algorithmslike Hysime, VCA, DECA and their corresponding results. Section IV discusses the 

experimental results. Conclusion is described in section V. 

 

II. HYPERSECTRAL  IMAGING 

 

A. Hyperspectral Data Acquisition 

The science of remote sensing has advanced over the recent past by using increasingly capable sensors. The 

development of an extremely powerful class of Earth remote sensing instruments has improved the capability of 

ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [7,19], 

and classification [3,17]. 
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Fig.1 Principle of hyperspectral data acquisition 

 

The AVIRIS [21], Probe-1 [8], and Hymap [23] instruments perform the collection of data in a whisk-broom mode to 

the cross-track direction by mechanical scanning and in the along-track direction by movement of the platform. 

Hyperion [29] and HyDICE [25] instruments use a push-broom imaging sensor, which acquires data in a cross-track 

line without any mechanical scanning.The digital data is produced by an analog to digital converter, which samples the 

radiance measured in each spectral channel with a given radiometric resolution. Figure 1(a) illustrates the principles 

involved in the hyperspectral data acquisition. The spatially and spectrally sample information of the ground surface 

can be described by a three dimensional structure, referred to as a data cube. 

 

 
Fig.2 Hyperspectral data cube and pixel radiance example 

 

Figure.2  shows an example of such a data cube and the radiance of a pixel vector as a function of the wavelength. The 

ground pixel size varies from meters to tens of meters depending on the altitude of the platform and on the 

instantaneous field of view (IFOV) of the sensor.The information content of hyperspectral images with thousands of 

pixels and hundreds of channels allows us to remotely identify ground materials, based on their spectral signature, and 

to perform land characterization based on the abundance of each material. 

 

B. Fundamentals of Unmixing 

Very often, the spatial portion occupied by a substance is smaller than the ground pixel size (tens of meters). As a 

result, the signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing 

of components originated from the constituent substances, termed endmembers, located at that element of resolution 

[18]. In this situation, the scattered energy is a mixing of the endmember spectrum [12,24]. Depending on the mixing 

scales at each pixel, the observed mixture is either linear or nonlinear [16]. The linear mixing model holds 

approximately when the mixing scale is macroscopic [28] and there is negligible interaction among distinct 

endmembers [9,11]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [30]. 

Figure 1.3(b) illustrates an intimate mixture, yielding a nonlinear scenario. The linear model assumes negligible 

interaction among distinct endmembers [9]. The nonlinear model assumes that incident solar radiation is scattered by 

the scene through multiple bounces involving several endmembers [6]. Very often, the effects of multiple scattering are 

assumed to be negligible and thus the linear model is adopted [20]. 

 

                                                     Sunlight Sensor        Sunlight                     Sensor 

  

 
       (a)                                                  (b) 

Fig. 3 Illustration of a pixel: (a) linear mixture (macroscopic mixing scale); (b): nonlinear mixture (intimate mixture). 
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The most common steps to unmix hyperspectral data are illumination and atmospheric effects,due to this effects the 

radiance acquired by hyperspectral sensors cannot be directly compared with a digital spectral library or even with 

other radiance data sets. This comparison is made possible by the atmospheric correction, which transforms the 

radiance spectra into reflectance. This operation accounts for solar spectrum, sensor and sun directions, path 

radiance.secondary illumination, and shadowing. The second operation, data reduction, is a consequence of the fact that 

the number of endmembers present in the scene is usually much smaller than the number of bands of an hyperspectral 

data set. This operation has a great impact since it reduces the amount of data, implying computational savings in the 

unmixing step, and it improves the signal-to-noise ratio (SNR). The third operation, spectral unmixing, usually 

embodies two steps: endmember determination and inversion. The first step estimates the signatures of the distinct 

endmembers present in the scene. The second step estimates the abundance fractions of each endmember.To conduct 

the hyperspectral unmixing operation, a mixture model must be adopted to describe how the constituent endmembers 

and how the atmosphere scatters the sun light at a given pixel. This process is addressed in the next section.A lot of 

algorithms like HYSIME, VCA, DECA, were introduced for hyperspectral unmixing. Hysime for signal subspace 

identification, VCA for endmember extraction, DECA for abundance fraction estimation through dirichlets 

distributions, n-finder for identifying pure pixel in a scene likewise above algorithms using Hyperspectral Unmixing. 

By using Sparse regression scheme, able to identify pure form of pixels in that scene. 

 

III. UNMIXING ALGORITHMS 

 

A. HYSIME: An Hyperspectral Signal Subspace Estimator 

The method is based on a mean squared error (MSE) approach to determine the signal subspace in hyperspectral 

imagery. HySime is an eigen decomposition based method; it first estimates the signal and noise correlations matrices, 

then it selects the subset of eigenvalues that best represents the signal subspace in the least square sense. 

The noise estimation, a necessary step in the HySime algorithm, is based on the multiple regression theory and exploits 

the high correlation existing between contiguous hyperspectral bands. This method has been optimized to reduce the 

computational complexity. Parts of HySime were published in [4,5]. 

 

(a) Dimensionality reduction: 

Dimensionality reduction has been approached in many ways. Band selection or band extraction, as the name suggests, 

exploits the high correlation existing between adjacent bands to select a few spectral components among those with 

higher SNR [2,13]. The signal subspace methods can be classified either as global or local [14]. The global methods 

estimate the signal subspace using the complete data setProjection techniques, which are usually used in the global 

approaches, seek for the best subspace to project data by minimizing an objective function. 

 

(b) Signal Subspace Estimation: 

This section introduce formally a new method to estimate the hyperspectral signal subspace termed hyperspectral signal 

identification by minimumerror(HySime). The method starts by estimatingthe signal and the noise correlation matrices 

and then it selects the subset of eigenvectors that best represents the signal subspace in the minimum mean squared 

error sense. 

The application of this criterium leads to the minimization of a two-term objective function. One term corresponds to 

the power of the signal projection error and is a decreasing function of the subspace dimension; the other term 

corresponds to the power of the noise projection and is an increasing function of subspace dimension. 

 

(c) Noise Estimation: 

Noise estimation is a classical problem in data analysis and particularly in remote sensing. Arguably, in hyperspectral 

imagery, the simplest noise estimation procedure is the shift difference method, also denominated as nearest neighbor 

difference (NND) [10]. This approach assumes that noise samples taken from adjacent pixels are independent and have 

the same statistics, but the signal component is practically equal. To obtain meaningful noise estimates, the shift 

difference method shall be applied in homogeneous areas rather than on the entire image. 

 

ALGORITHM 1: Noise Estimation 

1. INPUT  H  [h1,h2……,hN] 

2. Z = H
T
,K :=(Z

T
Z);K := K

-1
 

3. For i:=1to L do 

4. Bi :=([k‟]i,i – [K‟]i,i[K„]i,i/[K‟]i,i)[K]i,i; 

{Note that i = 1,….i-1,i+1,…..L} 

5. ̂ i  := Zi - ZiBi;End for; Output ̂ ; { ̂  is a N*L matrix with a estiamted noise}. 
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The  pseudo code  for  the  noise  estimation is  shown above Algorithm .Symbol [K]∂i,∂idenotes the matrix obtained 

from [K] by deleting the ith row and the ithcolumn, [K]i,∂i denotes the ith row of [K]:,∂i, and [K]∂i,i denotes [K]
T

∂i,∂i.Steps 

2 and 3 compute matrix [K] = Z
T
Z and its inverse, respectively. Steps 5 &6 estimates, respectively, the regression 

vector Bi the noise ̂ i, for each i=1,...,L. Brief details about this algorithm as shown in paper[31]. 

 

ALGORITHM 2: HYSIME 

1. INPUT H  [h1,hr2……,hN];  Kr  (RR
T
)/N; 

2. K:= 
1

N
 i( n̂ i n̂ i

T
); {Kn is the noise correlation matrix estimates} 

3. Kx := 
1

N
 i((ri - n̂ i)(ri - n̂ i

T
)); {Kx is the signal correlation matrix estimate}; Uk :=EkEk

T
: {where Ek are eigen 

vectors of Kx}.  

4. K :=arg mink{tr(U


kKr) + 2tr(UkKn)} 

The pseudo code for HySime is shown above Algorithm. HySime inputs are the spectral observed vectors and the 

sample correlation matrix Kr. Step 2 estimates the noise correlation matrix Kn. Step 3 estimates the signal correlation 

matrixKx.
 Step 4 and 5 calculate the eigenvectors ofthe signal correlation matrix and the mean squared error function. 

The minimizer of this function is the  estimated signal subspace dimension,K.   The  main advantage  

of  Algorithm 2  is  that the computation of [K ]and of K
1
=[K]

-1
 are out of the loop for. Thus, the computational 

complexity, i.e., the number of floating point operations (flops), of Algorithm 2 is substantially lower than that of an 

algorithm implementing the multiple regression without any assumptions.  This method has two 

weaknesses: first, it assumes that adjacent pixels have the same signal information, which is not valid in most 

hyperspectral data sets; second, to improve the noise estimation, a supervised selection of homogeneous areas must be 

carried out. 

 

B. VERTEX COMPONENT ANALYSIS: A FAST ALGORITHM TO UNMIX HYPERSPECTRAL DATA 

Hyperspectral vectors are mixtures of the spectral signatures of the endmembers present in the scene. Linear spectral 

mixture analysis, or linear unmixing, aims at estimating the number of endmembers, their spectral signatures, and their 

abundance fractions. Usually, this task embodies two steps: endmember extraction to determine the spectral signatures 

of endmembers followed by inversion to estimate the abundance fractions of each endmember.Brief details about this 

algorithm as shown in paper[32]. 

 

The algorithm exploits two facts:  

(i) the endmembers are thevertices of a simplex and 

(ii) the a±ne transformation of a simplex is also a simplex.Principle Component Analysis 

 

ALGORITHM 3: VCA 

1. INPUT H [h1,h2,….. hN] 

2. P :=Hysime(H);{the number of endmembers estimated by Hysim algorithm} 

3. SNRth :=15 + 10log10(p)dB; 

4. If SNR >SNRth , then ; d:=p; 

5. X :=U
T

dH; {Ud obtained by SVD} 

6. U := mean(X); {u is a 1 x d vector} 

7. [Y]j := [X]j/ (|X|
T

ju); {projective projection} 

8. Else;  d :=p-1; 

9. [X] :=U
T

d (|H|j- r ); {Ud is obatined by PCA} 

10. K :=arg maxj=1…N||[X]:J||; 

11. K :=[k|k|……|k];{k is a 1*N vector} 

12. Y :=
X
k

 ;End if 

13. A :=[eu|0|…….|0]; {eu :=[0,…..0,1]
T
 and A is a p*p auxiliary matrix} 

14. For i:=1 to p do 

15.  W =randn(o,Ip) {w is a zero mean random gaussian vector of covariance Ip} 

16. f :=
 Ip−AA # W

|| Ip−AA # W ||
 ; {f is a vector orthnormal to subspace spanned by [A] :,1,i} 

17. v :=f
T
Y; k := arg maxj =1….N |[v];,j|; {find the projection extreme}; 

18. [A];,i := [Y];,K; 

19. [indice]I :=k {stores the pixel index}; 

20. End for; if SNR >SNRth then 
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21. M:=Ud[X]:,indice ; { M̂ is a L*P  estiamted mixing matrix} 

22. Else;M:= Ud [X]:,indice+ r ; { M is a L × p estimated mixing matrix}  

29: end if 

C. DEPENDENT COMPONENT ANALYSIS 

This presents a new direction to blindly unmix hyperspectral data, termed dependentcomponent analysis (DECA), 

where abundance fractions are modeled by a mixture of Dirichletdensities, thus enforcing source non negativity and 

additivity constraints. DECA is in the vein of works [1,22] replacing independent sources represented by MOGs with 

mixtures of Dirichlet (MODs) sources. Compared with the geometric-based approaches, the advantage of DECA is that 

there is no need to have pure pixels in the observations. Brief details about this algorithm as shown in paper[33]. 

 

ALGORITHM 4: DECA 

1. initialize Τ, Ŵ ,  and Lbest 

2. while LN – LBEST> threshold do 

3. ŝ  := Ŵ
(t)

x;For q :=1 to K do 

4. D  Ŝ | ̂
q

(T)

 ∶=  
ɼ  ̂

qj

(t)

p
j=1

 ɼ ̂
qj

(t)

p
j=1

 Ŝ
j

̂
qj

 t −1

;
p
j=1  

5. βq
(t)

≔ 
̂

q

 t 

D Ŝ | ̂
q

 t 

 ̂
l

 t 

D Ŝ | ̂
l

 t 

k
l=1

;                                   ; 

6. ̂
q

(t)
∶= T βq

(t)
 ; end for; for j :=1 to p do 

7. auxqj  ≔ psi−1

 

  
 

psi   ̂
ql

(t)
p
l=1  + 

T βq
(t)

log Ŝ
j

(t)

 

T βq
(t)

 

 

  
 

;  

8. 
∂Q

∂w j
∶= T    βq

(t)
̂

qj

(t)

−1

Ŝ
j

XT − βq
(t)

̂
qp

(t)

−1

Ŝ
p

XT K
q=1  +   Ŵ

−T

 j −  Ŵ

−T

 p ; 

9. end for; Waux ∶= Ŵ

(t)

+  Τ
∂Q

∂W
 ; 

10. LN ∶= T  log  ̂
q

(t)
D s|auxq 

K
q=1  + log | det Waux|  ; 

11. if Lbest< LN then; Lbest =LN; Ŵ
(t+1)

 := Waux; 

12. ̂
(t+1)

 :=aux; increment T;else;decrement T;end if ; End while 
 

The Algorithm 4 presents the pseudo code aimed at the maximization. It implements a cyclic maximizer algorithm, 

which splits the estimation of W and θ into block maximization operations. The estimation of W uses a gradient 

ascendant method with adaptative steps. The estimation of θ is based on the algorithm described  and the resulting 

scheme  replacing  at independent sources, represented by MOGs with mixture of Dirichlet sources. 

 

D. SPARSE REGRESSION: 

Linear spectral unmixing is a popular tool in remotely sensed hyperspectral data interpretation.The unmixing problem 

can also beapproached in semi-supervised fashion, i.e. by assuming that the observed image signatures canbe expressed 

in the form of linear combinations of a number of pure spectral signatures knownin advance (e.g. spectra collected on 

the ground by a field spectro-radiometer).In practice,Unmixing is a combinatorialproblem which calls for efficient 

linear sparse regression techniques based on sparsity-inducingregularizers, since the number of endmembers 

participating in a mixed pixel is usually very smallcompared with the dimensionality and availability of spectral 

libraries. Linear sparse regression is an area of very active research with strong links to compressedsensing, basis 

pursuit, basis pursuit denoising, and matching pursuit. Furthermore, we provide a comparison of several available and 

new linearsparse regression algorithms with the ultimate goal of analyzing their potential in solving thespectral 
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unmixing problem by resorting to available spectral libraries.Results by the NASA Jet Propulsion Laboratory‟s 

Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) and spectral libraries publicly available from U.S. 

Geological Survey (USGS)
1
,indicate the potential of sparse regression techniques in the task of accurately 

characterizingmixed pixels using library spectra. This opens new perspectives for spectral unmixing, since 

theabundance estimation process no longer depends on the availability of pure spectral signaturesin the input data nor 

on the capacity of a certain endmember extraction algorithm to identifysuch pure signatures.A ∈R
L×m

, where L and m 

are the number of spectralbands and the number of materials in the library, respectively. All libraries herein 

consideredcorrespond to under-determined systems, i.e., L < m. With the aforementioned assumptions in mind, let x 

∈R
m
 denote the fractional abundance vector with regards to the library A. Asusual, we say that x is a k-sparse vector if 

it has at most k components different from zero.With these definitions in place, we can now write our Sparse regression 

problem as: 

minx∥x∥0 subject to ∥y−Ax∥2 ≤ δ, x ≥ 0, 1
T
 x = 1,      (1) 

where∥x∥0 denotes the number of non-zero components of x and δ ≥ 0 is the error tolerancedue to noise and modelling 

errors. A solution of problem (1), if any, belongs to the set ofsparsest signals belonging to the (m−1)probability simplex 

satisfying error tolerance inequality ∥y − Ax∥2 ≤ δ. Prior to addressing problem (1), we consider a series of simpler 

relatedproblems.. 

(a). Collaborative Sparse Regression: 

collaborative sparse regression improves hyperspectral unmixing by taking advantage of the fact that the number of 

endmembers in a given hyperspectral scene is generally low and all the observed pixels are generated by the same set 

of endmembers. These aspects are addressed through a new algorithm called CLSUnSAL which is able to accurately 

infer the abundance fractions in both simulated and real environments. 

The ADMM(Alternating Direction Method of Multipliers) algorithm for the formulation finds the set of pixels defining 

the largest volume by inflating a simplex inside the data. 

 

ALGORITHM: ADMM 

1. Initialization: set k =0, choose μ>0, U
(0)

, V
(0)

, D
(0)

 . 

2. repeat:  

3. U
(k+1)

←argminUL(U
(k)

,V
(k)

,D
(k)

)  

4. V
(k+1)

←argminVL(U
(k+1)

,V
(k)

,D
(k)

)  

5. D
(k+1)

 ← D
(k)

 −GU
(k+1)

 −BV
(k+1)

 

6. until some stopping criterion is satisfied. 

 

E. NMF:Non-Negative Matrix Factorization: 

Hyperspectral unmixing is therefore used to decompose received spectral reflectance of each pixel into a sum of 

reflectance (also called endmembers) weighted by the corresponding materials‟ contribution (known as abundance) in 

that pixel[6]. These materials can be anything found from the Earth surface, which are categorized into minerals, 

coatings, man-made structure, plants, etc. According to U.S. Geological Survey (USGS). Since endmembers and 

abundance are non-negative, non-negative matrices can represent HSI endmembers and abundance. Therefore the NMF 

process of an HU problem can be modelled as a multiplication of two non-negative matrices,Y ≈ Y
1
 = A ∗ S 

where Y , A and S represent HSI, endmember and abundance respectively. Figure 2.7 visually shows the mathematical 

model of NMF. It should be noted that the factorized matrices A and S have size m × k and k × n respectively, where 

their common size k is called model order. Its physical meaning is the total number of endmembers that exist in the 

HSI.  

 

 
Fig 4 Illustration of Non Negative Matrix Factorization 

 

F. N-FINDER 

N-FINDR is based on the fact that in spectral dimensions, the volume defined by a simplex formed by the purest pixels 

is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels 
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defining the largest volume by inflating a simplex inside the data. It has been frequently used as a benchmark for new 

algorithms and as a basis for modification. Here opportunities for improving the algorithm exist, particularly to reduce 

its computational expense. 

 

ALGORITHM: Successive N-FINDER: 

1. Let p be the number of endmembers required to be generated and  

    {e
(0)

1, . . . ,e
(0)

p} be a set of initial vectors randomly selected from the data 

2. For 1≤j≤p, find 

Ej*=arg{max V (e1*, . . .e*j-1,r,e
(0)

j+1, . . .,e
(0)

p)}. 

3. The set of {e*1, . . .,e*p} is the desired endmembers. 

The successive volume maximization (SVMAX)  is similar to VCA. The main difference concerns the way data is 

projected onto a direction orthogonal the subspace spanned by the endmembers already determined. VCA considers a 

random direction in these subspace, whereas SVMAX considers the complete subspace. 

 

IV. EXPERIMENTAL RESULTS 

 

The experiments were conducted on publically available USGS library data base. The images  were collected from 

different sensors like AVIRS,HYDICE. So their spectral and spatial resolution and imaging parameters will be 

different. e.g.,in-plane pixel size varies. Hyperspectral  images collected are in JPEG format with a size of 512x512. 

Proposed algorithms is tested for some USGS datasets obtained from HYDICE. Following section shows our 

experimental results obtained while simulating the datasets. Subspace and Noise Estimation by HYSIME, Endmember 

Extraction by VCA and Abundance fraction by DECA. 

 

Results for HYSIME: 

 

  
Fig. 5(a) Hysime                                   Fig. 5(b) Noise Estimates 

 

  
Fig.6 Pixel signature                                                   Fig.7 Diagonal of noise covariance matrix 
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Results for VCA: 

 

 
Fig.8 True Signature                         Fig.9 Abundance fraction 

  

 
Fig.10True Abundance and Signature Estimate 

 

 
 

Fig.11 Line of true and estimate abundance 

 

 
Fig. 12 data points Estimation 
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Results for DECA: 

 

 

 
Fig.13 

 

 
Fig.14 image regions       Fig.15 columns 

 

 
Fig.16 Signatures 

 

V. CONCLUSION 

 

AUnmixing hyperspectral data is the decomposition of the hyperspectral data into a collection of endmembers spectra 

and their corresponding abundance fractions, thus indicating the proportion of each endmember present in the scene.  

This paper introduces the hyperspectral signal identification by minimum error (HySime) method, which is a new mean 

squared error based approach to infer the signal subspace of hyperspectral data sets. Vertex Component Analysis 

(VCA), which is a new fast method to unmix hyperspectral data exploiting this geometric feature of hyperspectral 

mixtures. VCA is an unsupervised method that works with project and unprojected data. A new direction to blindly 

unmix hyperspectral data, termed dependent componentanalysis (DECA), using mixtures of Dirichlet (MOD) to model 
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abundance fractions is proposed. The method uses aexpectation maximization (EM) algorithm to estimate the unmixing 

matrix and to estimate the Dirichlet parameters. Compared with the geometric based approaches, its advantage is that 

there is no need to have pure pixels in the observations. 
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