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Abstract: Cloud computing as a developing technology drift is expected to restructure the advances in information 

technology. In a cost-proficient cloud location, a user can bear a certain degree of interruption while retrieving 

information from the cloud to reduce costs. In this paper, we address two important concerns in such an location: 

discretion and proficiency. We analyze a remote keyword based data retrieval system that was introduced by 

Ostrovsky. Their system allows a user to retrieve data of interest from an untrusted third party without leaking any 

information. The disadvantage is that it will cause a thick inquiring overhead acquired on the cloud and thus goes 

against the original purpose of cost proficiency. In this paper, we present three effective information retrieval for 

graded inquiry systems to decrease inquiring overhead incurred on the cloud. In, effective information retrieval for 

graded inquiry system inquiries are categorized into many grades, where a higher graded inquiry can retrieve a higher 

percentage of matched data. A user can retrieve data on demand by choosing inquiries of dissimilar grades. This feature 

is beneficial when there are a large number of matched data, but the user only needs a small subsection of them. Under 

different limitation settings, wide spread appraisals have been conducted on both analytical models and on a real cloud 

location, in order to examine the efficiency of our systems. 
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I. INTRODUCTION 

Cloud computing as a developing technology is 

predictable to restructure information technology 

procedures [1]. Due to the irresistible merits of cloud 

computing, e.g., cost-efficiency, litheness and scalability, 

more and more administrations choose to outsource their 

data for membership in the cloud. As a typical cloud 

application, an administration subscribes the cloud 

amenities and authorizes its staff to share data in the cloud. 

Each files described by a set of keywords, and the staff, as 

authorized users, can retrieve data of their interests by 

inquiring the cloud with certain keywords. In such 

anlocation, how to protect user secrecy from the cloud, 

which is a third party outside the security boundary of the 

of the administration, becomes a key problem. 

 

User secrecy can be classified into search secrecy and 

access secrecy [2]. Search secrecy means that the cloud 

knows nothing about what the user is searching for, and 

access secrecy means that the cloud knows nothing about 

which data are returned to the user. When the data are 

stored in the clear forms, a naive solution to protect user 

secrecy is for the user to request all of the data from the 

cloud; this way, the cloud cannot know which data the 

user is really interested in.  
 

While this does provide the necessary secrecy, the 

communication cost is high. Remote searching was 

proposed by Ostrovsky et al. [3], [4] (referred to as the 

Ostrovsky methods in this paper), which allows a user to 

retrieve data of interest from an untrusted server without 

leaking any information. However, the Ostrovsky methods 

has a high computational cost, since it requires the cloud 

to process the inquiry (perform homomorphism 

encryption) on every file in a collection. Otherwise, the 

cloud will learn that certain data, without processing, are  

 
 

of no interest to the user. It will quickly become a 

performance bottleneck when the cloud needs to process 

thousands of queries over a collection of hundreds of 

thousands of data. We argue that subsequently proposed 

improvements, like [5], [6], also have the same drawback. 

Commercial clouds follow a pay-as-you-go model, where 

the customer is billed for different operations such as 

bandwidth, CPU time, and so on. Solutions that incur 

excessive computation and communication costs are 

unacceptable to customers. 

 

To make remote searching applicable in a cloud location, 

our previous work [7] designed a cooperate remote 

searching protocol (COPS), where a proxy server, called 

the combination and scattering layer (CSL), is introduced 

between the users and the cloud. The CSL deployed inside 

an administration has two main functionalities: 

aggregating user queries and distributing search results. 

Under the CSL, the computation cost incurred on the 

cloud can be largely reduced, since the cloud only needs to 

execute a combined inquiry once, no matter how many 

users are executing queries. Furthermore, the 

communication cost incurred on the cloud will also be 

reduced, since data shared by the users need to be returned 

only once. Most importantly, by using a series of secure 

functions, COPS can protect user secrecy from the CSL, 

the cloud, and other users. 
 

In this paper, we introduce a novel concept, differential 

inquiry amenities, to COPS, where the users are allowed to 

personally decide how many matched data will be 

returned. This is motivated by the fact that under certain 

cases, there are a lot of data matching a user’s inquiry, but 

the user is Interested in only a certain percentage of 
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matched data. To illustrate, let us assume that Alice wants 

to retrieve 2 percent of the data that contain keywords ‘‘A, 

B’’, and Bob wants to retrieve 20 percent of the data that 

contain keywords ‘‘A, C’’. The cloud holds 1,000 data, 

where fF1; . . . ; F500g and fF501; . . . ; F1000g are 

described by keywords ‘‘A, B’’ and ‘‘A, C’’, respectively. 

In the Ostrovsky methods, the cloud will have to return 

2,000 data. In the COPS methods, the cloud will have to 

return 1,000 data. In our methods, the cloud only needs to 

return 200 data. Therefore, by allowing the users to 

retrieve matched data on demand, the bandwidth 

consumed in the cloud can be largely reduced. Motivated 

by this goal, we propose a method, effective information 

retrieval for graded inquiry systems (EIRGIS), in which 

each user can choose the rank of his inquiry to determine 

the percentage of matched data to be returned. The basic 

idea of EIRGIS is to construct a secrecy-preserving mask 

matrix that allows the cloud to filter out a certain 

percentage of matched data before returning to the CSL. 

This is not a trivial work, since the cloud needs to 

correctly filter out data according to the rank of queries 

without knowing anything about user secrecy. Focusing on 

different design goals, we provide two extensions: the first 

extension emphasizes simplicity by requiring the least 

amount of modifications from the Ostrovsky methods, and 

the second extension emphasizes secrecy by leaking the 

least amount of information to the cloud.  

 

Our key contributions are as follows: 

1. We propose three EIRGIS methods based on the CSL 

to provide a cost-efficient solution for remote 

searching in cloud computing.  

2. The EIRGIS methods can protect user secrecy while 

providing a differential inquiry service that allows 

each user to retrieve matched data on demand. 

3. We provide two solutions to adjust related 

parameters; one is based on the Ostrovsky methods, 

and the other is based on Bloom filters. 

4. Extensive experiments were performed using a 

combination of simulations and real cloud 

deployments to validate our methods. 

 

The remainder of this paper is organized as follows. We 

introduce related work in Section 2 before presenting 

preliminaries in Section 3. We describe EIRGIS methods 

in Section 4 and adjust the parameters in Section 5. After 

analyzing the performance and security of the proposed 

methods in Section 6, we conduct evaluations in Section 7. 

Finally, we conclude this paper in Section 8. 

 

II. RELATED WORKS 

Our work aims to provide differential inquiry amenities 

while protecting user secrecy from the cloud. Existing 

research that is similar to ours can be found in the areas of 

remote searching [3], [4], [5], [6], [7], [8], [9], [10], [11]. 

Unlike searchable encryption [2], [12], where the user 

conducts searches on encrypted data, remote searching 

performs keyword-based searches on unencrypted data. 

Remote searching was first proposed in [3], [4], which 

allows a server to filter streaming data without 

compromising user secrecy. Their solution requires the 

server to return a buffer of size Oðf logðfÞÞ when f data 

match a user’s inquiry. Each file is associated with a 

survival rate, which denotes the probability of this file 

being successfully recovered by the user. Based on the 

Paillier cryptosystem [13], the data that mismatch a 

inquiry will not survive in the buffer, but the matched data 

enjoy a high survival rate.  

 

Among various extensions, [5], [6] further reduced the 

communication cost from O(f log(f)) to O(f) by solving a 

set of linear equations to recover f matched data. However, 

their methods requires the decryption of one more buffer, 

thus the computation cost is higher than the Ostrovsky 

methods. Reference [8] presented an efficient decoding 

mechanism which allows the recovery of data that collide 

in a buffer position. Reference [9] proposed a recursive 

extraction mechanism, which requires a buffer of size O 

(f) when f data match a user’s inquiry. Reference [10] 

proposed two new communication-optimal constructions; 

one uses Reed-Solomon codes and allows for a zero-error, 

and the other is based on irregular LDPC codes and allows 

for lower computation cost at the server. The above 

remote searching methods only support searching for OR 

of keywords or AND of two sets of keywords. Reference 

[11]extended the types of queries to support disjunctive 

normal forms (DNF) of keywords. The main drawback of 

existing remote searching methods is that both the 

computation and communication costs grow linearly with 

the number of users executing queries. Thus, when 

applying these methods to a large-scale cloud location, 

inquiring costs will be extensive. 

 

Our previous work [7] was the first to make remote 

searching techniques applicable to a cloud location. 

However, [7] requires the cloud to return all of the 

matched data, which may cause a waste of bandwidth 

when only a small percentage of data are of interest. To 

alleviate the problem, we introduced the concept of 

differential inquiry amenities in [14]. The main difference 

between this work and[14] is that we provide two 

extensions to address different aspects of the problem, and 

we conduct extensive experimentson a real cloud to verify 

the effectiveness of the proposed methods. 

 

III. BACKGROUNDS 

1. System Model 

The system mainly consists of three entities:1 the 

combination and scattering layer (CSL), many users, and 

the cloud, as shown in Fig. 1. For ease of explanation, we 

only use a single CSL in this paper, but multiple CSLs can 

be deployed as necessary. ACSL is deployed in an 

administration that authorizes its staff to share data in the 

cloud. The staff members, as the authorized users, send 

their queries to the CSL, which will aggregate user queries 

and send a combined 
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Fig 1 

 

inquiry to the cloud. Then, the cloud processes the 

combined inquiry on the file collection and returns a 

buffer that contains all of matched data to the CSL, which 

will distribute the search results to each user. To aggregate 

sufficient queries, the administration may require the CSL 

to wait for a period  

 

2. Security Model and Design Goals 

The CSL is deployed inside the security boundary of an 

administration, and thus it is assumed to be trusted by all 

of the users. In the supplementary file available online, we 

will discuss how the EIRGIS methods work without such 

an assumption. The communication channels are assumed 

to be secured under existing security protocols, such as 

SSL, during information transfer. With these assumptions, 

as long as the CSL obeys our methods, a user cannot know 

anything about other users’ interests, and thus the cloud is 

the only attacker in our security model. As in existing 

work [15], [16], the cloud is assumed to be honest but 

curious. That is, it will obey our   methods, but still wants 

to know some additional information about user secrecy. 

 

Reference [2] classified user secrecy into search secrecy 

and access secrecy. In our work, user queries are classified 

into multiple ranks, and thus a new kind of user secrecy, 

rank secrecy, also needs to be protected against the cloud. 

Rank secrecy entails hiding the rank of each user inquiry 

from the cloud, i.e., the cloud provides differential inquiry 

amenities without knowing which level of service is 

chosen by the user. Rank secrecy can be classified into 

basic level and high level, where basic level will hide the 

rank of each inquiry from the cloud, and the high level 

will further hide the number of ranks from the cloud. Our 

design goal can be subdivided as follows: 

 

 Cost efficiency. The users can retrieve matched data 

on demand to further reduce the communication costs 

incurred on the cloud. 

 User secrecy. The cloud cannot know anything about 

the user’s search secrecy, access secrecy, and at least 

the basic level of rank secrecy.  

 

3. Overview of the Ostrovsky Methods 

We briefly introduce the Ostrovsky methods [3], [4], 

which relies on a public key cryptosystem, the Paillier 

cryptosystem [13]. Let Epk (m) denote the encryption of 

plaintext m under public key pk. The Paillier cryptosystem 

has the following homomorphism properties: 

 Epk(a).Epk(b)=Epk(a+b) 

 Epk(a)b=Epk(a.b). 

 

The Paillier cryptosystem allows the performance of 

certain operations, such as multiplication and 

exponentiation, on cipher text directly. Given the resultant 

cipher text, the user can obtain the corresponding plaintext 

that processes addition and multiplication operations. 

 

The Ostrovsky methods consist of three algorithms, the 

working process of which is shown in Fig. 2a. Two 

assumptions are used in their methods: first, a dictionary 

that consists of the universal keywords is assumed to be 

publicly available; second, the users are assumed to have 

the ability to estimate the number of data that match their 

queries. To better illustrate its working process, we 

provide an example in the supplementary file available 

online. 

 

Step 1. The user runs the Generate Inquiry algorithm to 

send an encrypted inquiry to the cloud. The inquiry is a bit 

string encrypted under the user’s public key, where each 

bit is an encryption of1, if the keyword in the dictionary is 

chosen; otherwise, it is an encryption of 0. 

 

Step 2. The cloud runs the Remote Search algorithm to 

return an encrypted buffer to the user. Generally speaking, 

the cloud processes the encrypted inquiry on every file in 

the collection to generate an encrypted c-e pair, and maps 

it to multiple entries of an encrypted buffer. For file Fj, the 

corresponding c-e pair, denoted as (cj; ej), is generated as 

follows: the bits in inquiry Q corresponding to keywords 

in Fj are multiplied together to  

 
Fig.2. Working process. (a) Ostrovsky methods. (b) 

EIRGIS-Efficient methods. 

 

Step 3. The user runs the File Recover algorithm to 

recover data. The user decrypts the buffer, entry by entry, 

to obtain the plaintext c-e pairs. For the entries in the 
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survival state, file content can be recovered by dividing 

the plaintext e value by the plaintext c value. 

 

The security of the Ostrovsky methods derives from the 

semantic security of the Paillier cryptosystem. The key 

technique of their methods is that the data mismatching a 

user’s inquiry are processed to encrypted 0s, which have 

no impact on the matched data, even if they are mapped in 

the same entry. Thus, the buffer size only depends on the 

number of matched data, which is much smaller than the 

number of data stored in the cloud.  

 

IV. METHODS DESCRIPTION 

In this section, we will describe the original EIQR 

methods and its two extensions. To distinguish the three 

EIRGIS methods, we name the original EIRGIS methods 

as EIRGIS Efficient the first extension as EIRGIS-Simple, 

and the second extension as EIRGIS-Secrecy, in this 

paper.  

 

The basic idea of EIQR-Efficient is to construct a secrecy-

preserving mask matrix with which the cloud can filter out 

a certain percentage of matched data before mapping them 

to a buffer. As proven in the Ostrovsky methods, the file 

survival rate is determined by the buffer size and mapping 

times. Therefore, the basic idea of two extensions is that, 

for each rank i 2 f0; . . . ; rg, the CSL adjusts the buffer 

size i and the mapping times i to make the file survival 

rate qi approach 1 i=r. To better illustrate the working 

process of the EIRGIS methods, we provide examples in 

the supplementary file available online. 

 

A. The EIRGIS-Efficient Methods 

Before illustrating EIQR-Efficient, two fundamental 

problems should be resolved: 
 

Firstly, we should determine the relationship between 

inquiry rank and the percentage of matched data to be 

returned. Suppose that queries are classified into 0 r ranks. 

Rank-0 queries have the highest rank and Rank-r queries 

have the lowest rank. In this paper, we simply determine 

this relationship by allowing Rank-i queries to retrieve ð1 

i=rÞ percent of matched data. Therefore, Rank-0 queries 

can retrieve 100 percent of matched data, and Rank-r 

queries cannot retrieve any data.  

 

Secondly, we should determine which matched data will 

be returned and which will not. In this paper, we simply 

determine the probability of a file being returned by the 

highest rank of queries matching this file. Specifically, we 

first rank each keyword by the highest rank of queries 

choosing it, and then rank each file by the highest rank of 

its keywords. If the file rank is i, then the probability of 

being filtered out is i=r. Therefore, Rank-0 data will be 

mapped into a buffer with probability 1, and Rank-r data 

will not be mapped at all. Since unneeded data have been 

filtered out before mapping, the mapped data should 

survive in the buffer with probability 1. In Section 5, we 

will illustrate how to adjust the buffer size and mapping 

times to achieve this goal. 

 

EIRGIS-Efficient mainly consists of four algorithms, with 

its working process being shown in Fig. 2b. Since 

algorithms Inquiries and Result Divide are easily 

understood, we only provide the details of algorithms 

Matrix- Construct and File Filter in Alg. 1. 

 

Step 1. The user runs the Inquiry Gen algorithm to send 

keywords and the rank of the inquiry to the CSL. Since the 

CSL is assumed to be a trusted third party, this inquiry 

will be sent without encryption. 

 

Step 2. After aggregating enough user queries, the CSL 

runs the Matrix Construct algorithm to send a mask matrix 

to the cloud. The mask matrix M is a d-row and r-column 

matrix, where d is the number of keywords in the 

dictionary, and r is the lowest inquiry rank. Let M½i; j 

denote the element in the  

 
 

i-th row and the j-th column, and let l be the highest rank 

of queries that choose the i-th keyword Dic½I  in the 

dictionary. M is constructed as follows: for the i-th row of 

M that corresponds to set to 0, then each element is 

encrypted under the CSL’s public key pk. For the rows 

that correspond to Rank-l keywords, the CSL sets the first 

r _ l elements, rather than random r _ l elements, to 1. 

There as on is to ensure that, given any Rank-l file Fj, 

when we choose a random number k, the probability of all 

of the k-th elements of the rows that correspond Fj’s 

keywords being0 is l=r, which is determined by the 

highest rank of Fj’s keywords. 

 

Step 3. The cloud runs the File Filter algorithm to return a 

buffer that contains a certain percentage of matched data 

to the CSL. Specifically, the cloud multiplies the k-th 

elements of the rows that correspond to Fj’s keywords 

together ro form cj, where k ¼ j mod r. Then, it powers 

jFjj to cj to obtain ej, and maps the c-repair into multiple 

entries of a buffer, as in the Ostrovsky methods. Note that, 

with Step 2, we can make sure that, for a Rank-l file Fj, 

the probability of cj being 0 is l=r, and thus the probability 

of Fj being filtered out is l=r 

 

Step 4. The CSL runs the Result Divide algorithm to 

distribute search results to each user. File contents are 

recovered as the file Recover algorithm in the Ostrovsky 

methods. To allow the CSL to distribute data correctly, 

were quire the cloud to attach keywords to the file content. 

Thus, the CSL can find out all of the data that match users’ 

queries by executing keyword searches. 
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B. The EIRGIS-Simple Methods 

The working process of EIRGIS-Simple is similar to Fig. 

2b.Themain differences lie in the Matrix Construct and 

File Filter algorithms (see Alg. 2). Intuitively, given 

queries that are classified into 0 _ r ranks, CSL sends r 

combined queries, denoted as Q0; . . .;Qr_1, to the cloud, 

each with a different rank. Specifically, for Qi, the CSL 

sets the j-th bit to an encryption of 1 if the j-th keyword 

Dic½j_ in the dictionary is chosen by at least one Rank-i 

inquiry. The cloud then will generate r buffers, denoted as 

B0; . . . ;Br_1, each with a different file survival rate. 

Specifically, for Bi, the CSL adjusts the mapping time _i 

and the buffer size _i so that the survival rate of data in Bi 

is qi ¼ 1 _ i=r, where0 _ i _ r _ 1. 

 

The main drawback of EIRGIS-simple is that it returns 

redundant data when there is data satisfying more than one 

ranked inquiry. For example, if Fi is of interest by Rank-

0and Rank-1 queries, it will be returned twice (in Rank-

0buffer and Rank-1 buffer, respectively), which wastes the 

network bandwidth. Therefore, the best case scenario is 

when there are no data of interest to different rank 

equerries, and the worst case scenario is when queries of 

different ranks inquiry the same data. 

 
 

C. The EIRGIS-Secrecy Methods 

The working process of EIRGIS-Secrecy is similar to Fig. 

2b.The main differences lie in the Matrix Construct and 

File Filter algorithms (see Alg. 3). Intuitively, EIRGIS-

Secrecy adopts one buffer, with different mapping times 

for data of different ranks. Let _i denote the mapping 

times for a Rank-I inquiry, and let l be the highest rank of 

queries that choose the i-th keyword Dic½i_ in the 

dictionary. The mask matrix M is a d-row and m-column 

matrix, where d is the number of keywords in the 

dictionary, and m ¼ max _i. The Matrix Construct 

algorithm constructs M in the following way: for the i-th 

row of M that corresponds to, the CSL sets and to 0, and 

then encrypts each element under its public key. Note that 

for a row that corresponds to a Rank-l keyword, the CSL 

sets the first_l elements, rather than random _l elements, to 

1. The reason is to ensure that, given any Rank-l file, when 

we multiply the rows that correspond to file keywords 

together in a element-by-element way, the resulting row 

contains _l elements whose values are larger than 0. 

 

In the File Filter algorithm, for each file Fj, the cloud 

multiplies the rows that correspond to file keywords, 

element by element, to form a resulting row. Each element 

in the resulting row corresponds to a c value. Letcj;1; . . . ; 

cj;m denote Fj’s c values, where m ¼ max _i. The cloud 

powers the file content jFjj to cj;k to form ej;k, and maps 

ðcj;k; ej;kÞ to the buffer once, where 1 _ k _ m. Note that 

with the Matrix Construct algorithm, we can make sure 

that, for a Rank-l file, the number of c values larger than 0 

is Therefore, although m c-e pairs will be mapped, only of 

them will take effect, which is equal to mapping c-e pairs 

times to a buffer. 

 

V. ANALYSES 

A. Security Analysis 

We will show that EIRGIS methods can provide search 

secrecy, access secrecy, and rank secrecy as follows. 

 

1. Search Secrecy: 

In the three methods, the combined inquiry sent to the 

cloud is encrypted under the CSL’s public key with the 

Paillier cryptosystem. The inquiry is a matrix of encrypted 

0s and 1s. The Paillier cryptosystem is semantically 

secure, and the cipher text of every 1 or 0 is different from 

other 1s or 0s. Therefore, the cloud cannot deduce what 

each user is searching for from the encrypted inquiry. 

 

2. Access Secrecy: 

In the three methods, the cloud processes the encrypted 

inquiry on each file in a collection, and maps the 

processing result into a buffer, which is encrypted with the 

CSL’s public key. The cloud conducts this process for all 

data in the same way. Therefore, the cloud cannot know 

which data are actually returned from the encrypted buffer. 

 

3. Rank Secrecy: 

In EIRGIS-Simple, the messages from the CSL to the 

cloud are r encrypted queries, the buffer size, and the 

mapping times, where r is the information, which we leak 

more than [3]. Given r, the cloud only knows the number 

of inquiry ranks without knowing how many users are in 

each rank, nor which users are in which ranks.  

 

Therefore, EIRGIS Simple can protect the basic level of 

rank secrecy for a user. In EIRGIS-Secrecy, the message 

from the CSL to the cloud is a d-row and m-column mask 

matrix, where d is the number of keywords in the 

dictionary, and m ¼ max i is the maximal value of 

mapping times.  

 

Here, no extra information is leaked more than [3]. 

Therefore, EIRGIS-Secrecy provides a high level of user 

rank secrecy. In EIRGIS-Efficient, the message from the 

CSL to the cloud is a d-row and r column mask matrix, 

where d is the number of keywords in the dictionary, and r 

is the lowest rank of user queries.  

 

Here, r is the information that we leak more than [3]. 

Therefore, EIRGIS-Efficient can protect the basic level of 

rank secrecy 
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5.2 Performance Analysis 

 
 

We compare the performance between No Rank and the 

three EIRGIS methods under different parameter settings 

(see Table 1). In No Rank, the CSL only combines user 

queries, but does not provide differential inquiry 

amenities. In the supplementary file available online, we 

also provide a comparison of performance between No 

Rank and the work in [3], [6]. Suppose that queries are 

classified into 0  r ranks, t data stored in the cloud whose 

keywords constitute a dictionary of size d, fi data 

matching Rank-I queries, and f0 i data matching Rank-i 

queries but mismatching higher ranked queries. 

Furthermore, in No Rank and EIRGIS-Efficient, the 

threshold file survival rate p0 is set to; in EIRGIS-Simple 

and EIRGIS-Secrecy, p0 i is set to i=r þ  
 

B.  Computational Cost 

We only consider the cost of the exponential operation, 

which is the most expensive. In both parameter settings, 

the results are the same. In EIRGIS-Simple, the 

computational cost is r times more than No Rank since, for 

each ranked inquiry, the cloud needs to process it on the 

file collection once. In EIRGIS-Secrecy, the 

computational cost is maxiÞ times more than No Rank 

since, for each file, the cloud needs to execute maxiÞ 

exponentiations with the matrix elements. In EIRGIS-

Efficient, the computational cost is much the same as in 

No Rank, since the cloud needs to execute exponentiation 

once for each file.  
 

VI. CONCLUSION 
In this paper, we proposed three EIRGIS methods based 

on an CSL to provide differential inquiry amenities while 

protecting user secrecy. By using our methods, a user can 

retrieve different percentages of matched data by 

specifying queries of different ranks. By further reducing 

the communication cost incurred on the cloud, the EIRGIS 

methods make the remote searching technique more 

applicable to a cost-efficient cloud envir onment. 

However, in the EIRGIS methods, we simply determine 

the rank of each file by the highest rank of queries it 

matches. For our future work, we will try to design a 

flexible ranking mechanism for the EIRGIS methods. 
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