
 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 24

An Effective Algorithm ForMultiplication For

Residual Number System

MrPhalguna P S
1
, Mr Keith Raymond Fernandes

2

Electronics and Communication Engineering, St. Joseph Engineering College, Mangalore, India
1

Assistant Professor, Electronics and Communication Engineering, St. Joseph Engineering College, Mangalore, India
2

Abstract: Residual Number System (RNS) represents a larger integer using a set of smaller integer for a set of selected

moduli [1]. The computation part of the RNS has an integer part multiplied with the selected modulo and a residual

part. The selected moduli are absolute values, which are relatively prime [1][2]. In RNS multiplication process the

residues of the multiplier and multiplicand are obtained for set of moduli and multiplied respectively to get the residues

of final product. The conversion of RNS to Decimal Number System is done by Chinese Remainder Theorem (CRT).In

RNS multiplication process, multiplication of large numbers can be done at the same speed as on short numbers. The

speed is determined by the largest modulo position. The computation complexity is decreased by representing the

larger number as set of smaller numbers. In this project, a comparison will be carried out between the Booth multiplier,

Modified Booth multiplier and Radix-8 Booth multiplier with and without using RNS and are designed using Verilog

HDL and implemented in FPGA. These multipliers are checked for Power and Efficiency.

Keywords: RNS (Residual Number System), CRT (Chinese Remainder Theorem).

I. INTRODUCTION

Booth multiplication is a technique introduced by Andrew

D. Booth in the year 1950. It allows smaller, faster

multiplication by encoding the numbers that are

multiplied. It is the standard technique used in chip design

and provides significant improvement over the long

multiplication technique.

The advantage of this method is the halving of the number

of partial products. This is important in circuit design as it

relates to the propagation delay in the running of the

circuit, and the complexity and power consumption of its

implementation. It is possible to reduce the number of

partial products to half by using the technique of radix 4

Booth recoding and still it can be reduced by using the

technique of radix 8 booth encoding.

Here the modified Booth multiplier is the advanced

version of the normal Booth multiplier. This modified

Booth multiplier gives the multiplied output in less

number of steps compared to the normal Booth

multipliers. So this modified Booth multiplier which can

be used in the FIR filter consumes very less power

compared to the Radix 2 Booth multiplier. Residual

Number System (RNS) relies on the Chinese remainder

theorem of modular arithmetic for its operation, a

mathematical idea from Sun TsuSuan-Ching in the 4th

century AD.

Residual Number System (RNS) represents a larger

integer using a set of smaller integer for a set of selected

moduli [2].A multiplier is one of the key hardware blocks

in most digital signal processing (DSP) systems. Typical

DSP applications where a multiplier plays an important

role include digital filtering, digital communications and

spectral analysis. Many current DSP applications are

targeted at portable, battery-operated systems, so that

power dissipation becomes one of the primary design

constraints.

Since multipliers are rather complex circuits and must

typically operate at a high system clock rate, reducing the

delay of a multiplier is an essential part of satisfying the

overall design. In this project radix 2, radix 4 and radix 8

Booth multipliers are designed with and without using

Residual Number System.

II. DESIGN APPROACH
This section focus on the design approach for Radix-2,

Radix-4 and Radix-8 Booth multipliers by considering the

necessary specifications for develop the relevant source

code in Verilog HDL using Finite State Machine.

A. Booth Multiplication Algorithm for Radix-2:

Booth‟s multiplication algorithm is a multiplication

algorithm that multiplies two signed binary numbers in

two‟s complement notation.

The algorithm was invented by Andrew Donald Booth

while doing research on crystallography at Brikbeck

College in Bloomsbury, London [3].

Booth used desk calculators that were faster at shifting

than adding created the algorithm to increase their speed.

Let M and Q be the multiplicand and multiplier

respectively.

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 25

Table 1: Radix-2 Booth Encoding Table

BLOCK
PARTIAL

PRODUCT

00
Arithmetic Shift

Right (1 bit)

01

A=A+M and perform

Arithmetic Shift Right

(1 bit)

10

A=A-M and perform

Arithmetic Shift Right

(1 bit)

11
Arithmetic Shift

Right (1 bit)

This algorithm works based on the last two bits of the

partial product.Initially load the accumulator with zero‟s

(4 bits) followed by accumulating the multiplier which is

padded by a zero bit at the LSB forming a partial product.

By considering last two bits of the partial product, do the

operation as specified in the algorithm. After „n‟ iterations

discard the last bit of the obtained partial product to get the

result.This Radix 2 Booth multiplier can be designed by

using the Finite State Machine Technique. In this

technique four states are considered for the design of the

Radix 2 Booth Multiplier. They are wait for Go state,

initial state, Add shift state, done state.

Wait for Go state: This state checks for the availability of

the inputs for Radix 2 Booth multiplier. If the inputs are

ready, the next state i.e initial sate is activated and if the

inputs are not ready then this state will be continued until

the inputs are given by the user.

Initial state: This state will mainly concentrate on the

several issues such as addition of the booth bit (a zero bit)

to the LSB of the first Partial Product, padding of the

sufficient bits to the MSB of the first Partial Product,

number of passes that has to be performed in the radix 2

Booth multiplication and the sign bit extension concepts.

The Radix 2 Booth multiplication process requires „n‟

passes for a n bit input.

If all the issues are satisfied the next state i.e. Add Shift

state is activated or else it will remain in the same state.

Add Shift state: This state acts according to the Radix 2

Booth algorithm. In this state the last two bits of the partial

product is considered and the particular addition operation

is performed according to the algorithm followed by

shifting the partial product to the right (i.e. Arithmetic

Shift Right) by one bit. This state execute until the number

of passes are satisfied (i.e. n passes). If the numbers of

passes are less than n, then same state will be excecuted

until it is satisfied.

Done state: this is the final state of the Finite State

Machine. Here LSB of the last partial product is discarded

and the values are get stored the product register.

B. Booth Multiplication Algorithm for Radix-4:

One of the solutions of realizing high speed multipliers is

to enhance parallelism which helps to decrease the number

of subsequent calculation stages. The original version of

the Booth algorithm (Radix-2) had two drawbacks. They

are:

1) The number of add subtracts operations and the

number of shift operations become variable and

become inconvenient in designing parallel multipliers.

2) The algorithm becomes inefficient when there are

isolated 1‟s. These problems are overcome by using

modified Radix-4 Booth multiplication algorithm.

The salient features of this algorithm are:

Only n/2 clock cycles are needed for n-bit multiplication

as compared to n clock cycles in Booth‟s

algorithm.Isolated 0/1 is handled efficiently.For even n,

the two‟s complement multipliers are handled

automatically whereas for odd n an extension of sign bit is

required.

Table 3: Radix-4 Booth Encoding Table

This algorithm scans strings of three bits as follows:

1) Extend the sign bit 1 position if necessary to ensure

that n is even.

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 26

2) Append a 0 to the right of the LSB of the multiplier.

3) According to the value of each vector, each Partial

Product will be 0, +y, -y, +2y or -2y [4].Radix-4

both encoder performs the process of encoding the

multiplicand based on multiplier bits.

It will compare 3 bits at a time with overlapping

technique. Grouping starts from the LSB, and the first

block only uses two bits of the multiplier and assumes

a zero for the third bit.

The functional operation of Radix-4 booth encoder is

shown in the Table 3.This Radix 4 Booth multiplier

can be designed by using the Finite State Machine

Technique.

In this technique four states are considered for the

design of the Radix 4 Booth Multiplier. They are wait

for Go state, initial state, Add shift state, done state.

Wait for Go state: This state checks for the availability of

the inputs for Radix 4 Booth multiplier. If the inputs are

ready, the next state i.e. initial sate is activated and if the

inputs are not ready then this state will be continued until

the inputs are given by the user.

Initial state: This state will mainly concentrate on the

several issues such as addition of the booth bit (a zero bit)

to the LSB of the first Partial Product, padding of the

sufficient bits to the MSB of the first Partial Product,

number of passes that has to be performed in the radix 4

Booth multiplication and the sign bit extension concepts.

The Radix 4 Booth multiplication process requires „ n/2 ‟
passes for a n bit input. If all the issues are satisfied the

next state i.e Add Shift state is activated or else it will

remain in the same state.

Add Shift state: This state acts according to the Radix 4

Booth algorithm. In this state the last three bits of the

partial product is considered and the particular addition

operation is performed according to the algorithm

followed by shifting the partial product to the right (i.e.

Arithmetic Shift Right) by two bits.

This state execute until the number of passes are satisfied

(i.e. n passes).

If the numbers of passes are less than n/2, then same state

will be executed until it is satisfied.

Done state: this is the final state of the Finite State

Machine. Here LSB of the last partial product is discarded

and the values are get stored the product register.

C. Booth Multiplication Algorithm for Radix-8:

The solutions of realizing high speed multipliers are to

reduce the Partial products by factor of one third of the

radix 4 Booth multiplier method [4].

Table 4: Radix-8 Booth Encoding Table

BLOCK PARTIAL PRODUCT

0000 Arithmetic Shift Right (3 bit)

0001
1*Multiplicand and perform

Arithmetic Shift Right (3 bit)

0010
1*Multiplicand and perform

Arithmetic Shift Right (3 bit)

0011
2*Multiplicand and perform

Arithmetic Shift Right (3 bit)

0100
2*Multiplicand and perform

Arithmetic Shift Right (3 bit)

0101
3*Multiplicand and perform

Arithmetic Shift Right (3 bit)

0110
3*Multiplicand and perform

Arithmetic Shift Right (3 bit)

0111
4*Multiplicand and perform

Arithmetic Shift Right (3 bit)

1000
-4*Multiplicand and perform

Arithmetic Shift Right (3 bit)

1001
-3*Multiplicand and perform

Arithmetic Shift Right (3 bit)

1010
-3*Multiplicand and perform

Arithmetic Shift Right (3 bit)

1011
-2*Multiplicand and perform

Arithmetic Shift Right (3 bit)

1100
-2*Multiplicand and perform

Arithmetic Shift Right (3 bit)

1101
-1*Multiplicand and perform

Arithmetic Shift Right (3 bit)

1110
-1*Multiplicand and perform

Arithmetic Shift Right (3 bit)

1111 Arithmetic Shift Right (3 bit)

This algorithm scans strings of four bits as follows:

1) Extend the sign bit 1 position if necessary to ensure

that n is even.

2) Append a 0 to the right of the LSB of the multiplier.

3) According to the value of each vector, each Partial

Product will be 0, +y, -y, +2y,-2y, +3y, -3y, +4y or -

4y [4].

Radix-8 booth encoder performs the process of encoding

the multiplicand based on multiplier bits. It will compare 4

bits at a time with overlapping technique. Grouping starts

from the LSB, and the first block only uses three bits of

the multiplier and assumes a zero for the third bit. The

functional operation of Radix-8 booth encoder is shown in

the Table 4.

This Radix 8 Booth multiplier can be designed by using

the Finite State Machine Technique. In this technique four

states are considered for the design of the Radix 8 Booth

Multiplier. They are wait for Go state, initial state, Add

shift state, done state.

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 27

Wait for Go state: This state checks for the availability of

the inputs for Radix 8 Booth multiplier. If the inputs are

ready, the next state i.e. initial sate is activated and if the

inputs are not ready then this state will be continued until

the inputs are given by the user.

Initial state: This state will mainly concentrate on the

several issues such as addition of the booth bit (a zero bit)

to the LSB of the first Partial Product, padding of the

sufficient bits to the MSB of the first Partial Product,

number of passes that has to be performed in the radix 8

Booth multiplication and the sign bit extention concepts.

The Radix 8 Booth multiplication process requires „ 𝑛/
3‟ passes for a n bit input. If all the issues are satisfied the

next state i.e Add Shift state is activated or else it will

remain in the same state.

Add Shift state: This state acts according to the Radix 2

Booth algorithm. In this state the last two bits of the partial

product is considered and the particular addition operation

is performed according to the algorithm followed by

shifting the partial product to the right (i.e. Arithmetic

Shift Right) by one bit. This state excecute until the

number of passes are satisfied (i.e. n passes). If the

number of passes are less than n, then same state will be

excecuted until it is satisfied. Done state: This is the final

state of the Finite State Machine. Here LSB of the last

partial product is discarded and the values are get stored

the product register.

III. RESIDUAL NUMBER SYSTEM

The multiplier and the multiplicand numbers which are

selected is fed to the decimal to residual converter where

the modulo operation is performed for both the multiplier

and the multiplicand by considering the selected prime

moduli set (3,5,7) The residual part obtained after the

modulo operation is considered (i.e larger integer is

converted into smaller set of integers in RNS). These

residual numbers are multiplied by using effective

multiplier (booth multiplier) and the final product

obtained will be in the residual form. This product is again

converted back to the decimal number by applying Chinese

Remainder Theorem.

MrTAX i

N

i

ii mod
1

Where „T‟ is the multiplicative inverse, „r‟ is the residual

number and „M‟ represents the dynamic range of the

selected set of prime moduli (3,5,7) i.e 105.

IV. RESULT

Fig 1: Output waveform for Radix 2 Booth multiplier

Fig 2: Output waveform for Radix 4 Booth multiplier

Fig 3: Output waveform for Radix 8 Booth multiplier

V. CONCLUSION

This project discuss about the implementation of efficient

algorithm for modified booth multiplier which are used in

the design of FIR filters. Here the brief description about

Booth multiplier, Modified Booth Multiplier and Radix 8

Booth multiplier are explained.It is observed that the

partial products obtained by the multiplication process of

two signed or unsigned numbers are reduced for the Booth

multiplier, Modified Booth Multiplier and Radix 8 Booth

multiplier respectively. Hence the efficiency of the

multipliers will be increased.Here the efficiency of

Modified Booth Multiplier will be more than the normal

Booth multiplier, where as the Radix 8 Booth multiplier

will give more efficiency compared to Booth multiplier

and Modified Booth multiplier because of the reduction of

partial products. The future implementations of these

multipliers are done with using RNS and are compared in

power and efficiency factors.

REFERENCES
[1] R. Muralidharan and C. H. Chang, “Radix-8 Booth encoded (2n-1)

modulo multipliers with adaptive delay for high dynamic range
Residue Number System”,IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 58, no. 5, pp. 982–993, May 2011.
[2] K. BhaskaraRao, B.ChinnaRao, “Radix-8 Booth Encoded Modulo

(2n-1) Multipliers with Parallel Prefix Adder For High Dynamic

Range RNS”, IJERD, Volume 5,Issue 1 ,2012.
[3] A. D. Booth, “A signed binary multiplication

technique”,QuarterlyJ. Mechan. Appl. Math., vol. IV, part 2, 1951.

[4] Neredimelli VVP Hide, Dr. I. ShanthiPrabha, “Design of Modulo
2n-1 Based on Radix -8 Algorithm for RNS and MAC

applications”, IJRCCT, ISSN-2278-5841, Issue 3,Aug-2012.

http://www.ijireeice.com/

	RESIDUAL NUMBER SYSTEM

