
ISSN (Online) 2321-2004
ISSN (Print) 2321-5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 3, Issue 2, February 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2015.3230 142

Fast Multiplication Based on Different

Compressors

Shalu George
1
, Jinu Isaac Kuruvilla

2

Student, VLSI and Embedded System, Mangalam College of Engineering, Kottayam, India 1

Asst. Professor, Electronics and Communication, Mangalam College of Engineering, Kottayam, India 2

Abstract: In many of digital systems like graphic processors, digital signal processors fast parallel multiplication using

adder trees are present. To speed up the computation like addition is very important. This paper presents different

approaches to the efficient implementation of compress tree adders on FPGAs. Through a fair comparison we present a

proper compressor selection approach to get minimum XOR delay. This paper will help to choose a proper compressor

for fast multiplication. This approach is defined in parameterizable HDL code, which makes it compatible with any

FPGA family.

Keywords: Redundant adder, Carry Save addition, multi-operand addition.

I. INTRODUCTION

Addition is one of the basic process in large computations.

Different types of adders are available for large addition.

The delay of addition will determine the overall

performance of the system. Most of the time consumed by

adder is due to carry propagation. So to reduce the delay

some fast adder structures are present which will calculate
the result in reduced time. Large addition processes are

commonly seen in multipliers for reducing the partial

products. Compressors are used to reduce the partial

products of multiplication during an addition process.

ADDER STRUCTURES

Adders are used in different aspects. It is generally

recognized that most of the time consumed by adders is

due to carry propagation, so to reduce the propagation

time different binary adder schemes are used each have

their own characters, such as area and energy dissipation.

So to choose a adder with specific requirement and
constraint is important. Here the function of some

commonly used adders is given.

A.REDUNDANT ADDERS

In redundant adders there is no carry propagation is
required ie, independent of numbers of bits of the adders.

The main aim of the redundant adder is to reduce the

addition time. But this adder has some disadvantages, the

increase of the number of bits needed for representation of

a number and some of operations can’t be performed in

redundant numbers such as magnitude comparison or sign

detection.

B.CARRY SAVE ADDERS

Carry-save adder (CSA) and full adder have same circuit,

as show in Figure 1.

Fig1: Function of Carry-save adder

The carry in signal is considered as an input of the CSA,

and the carry out signal is considered as an output of the

CSA. Figure 2 show the CSA compute flow and Table 1

will show the CSA working.

Fig 2: CSA computation

Table 1: CSA Computation

ISSN (Online) 2321-2004
ISSN (Print) 2321-5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 3, Issue 2, February 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2015.3230 143

The computation can be in two steps, first we compute S

and C using a CSA, and then we use CPA to compute the
total sum. Here the carry signal and the sum signal can be

computed independently to get only two n -bits numbers.

A CPA is used for the last step computation and the carry

propagation exists only in the last step.

II. MULTI-OPERAND ADDITION

 For adding several operands we have adder tree, such as

Wallace tree, Dadda tree, and carry save adder tree and so

on. In this paper, carry save adder tree structure is used.

There are two methods reduction by rows and reduction by

columns, carry save adder tree belong to first method

which consist of modules to reduce the rows are called

adders and reduce the columns are called counters.

A. CARRY SAVE ADDER TREE

The carry save adder tree can be used to add three

operands in two’s complement representation and produce

a result as the sum of two vectors. A 3-to-2 reduction is

called [3:2] adder, and using this tree, we can use a [p :2]

adder to reduce p bit-vectors to 2 bit-vectors using CSAs.
We can use [3:2] adders to reduce the rows and get 2 bit

vectors. No propagation of the carries is required except

on the last two rows which result in a speed up of the

computation. From Figure 3, the number of input vectors

was reduced by the rows. Finally, we should estimate the

numbers of levels of the CSA tree as

where k is the number of input operands.

Fig 3: Reduction by rows

B. LINEAR ARRAY STRUCTURE

 In the previous approach, specialized carry resources are

only used in the design of a single 4:2 compressor, but

these resources have not been considered in the design of

the whole compressor tree structure. To optimize the use

of the carry resources, we propose a compressor tree

structure similar to the classic linear array of CSAs.

However, in our case, given the two output words of each
adder (sum-word and carry-word), only the carry-word is

connected from each CSA to the next, whereas the sum

words are connected to lower levels of the array. Fig.4

shows an example for a 5:2 compressor tree designed

using the proposed linear structure, where all lines are N

bit width buses, and carry signal are correctly shifted. For

the CSA, we have to distinguish between the regular

inputs (A and B) and the carry input (Ci in the figure),

whereas the dashed line between the carry input and

output represents the fast carry resources.

Fig 4: N-bit width 5:2 linear array compressor tree

 With the exception of the first CSA, where Ci is

used to introduce an input operand, on each CSA Ci is

connected to the carry output (Co) of the previous CSA, as

shown in Fig. 4.Thus, the whole carry-chain is preserved

from the input to the output of the compressor tree (from

I0 to Cf). First, the two regular inputs on each CSA are

used to add all the input operands (Ii). When all the input

operands have been introduced in the array, the partial

sum-words (Si) previously generated are then added in

order (i.e., the first generated partial sums are added first)
as shown in Fig. 4. In this way, we maximize the overlap

between propagation through regular signals and carry-

chains.

Regarding the area, the implementation of a generic

compressor tree based on N bit width CSAs requires Nop

_ 2 of these elements (because each CSA eliminates one

input signal) Therefore, considering that a CSA could be

implemented using the same number of resources as a

binary CPA, the proposed linear array, the 4:2 compressor

tree, have approximately the same hardware cost.

In relation to the delay analysis, from a classic point of

view our compressor tree has Nop-2 levels. This is much

ISSN (Online) 2321-2004
ISSN (Print) 2321-5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 3, Issue 2, February 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2015.3230 144

more than a classic Wallace tree structure and, thus, a

longer critical path. Nevertheless, because we are targeting
an FPGA implementation, we temporarily assume that

there is no delay for the carry-chain path. Under this

assumption, the carry signal connections could be

eliminated from the critical path analysis and our linear

array could be represented as a hypothetical tree. To

compute the number of effective time levels (ETL) of this

hypothetical tree, each CSA is considered a 2:1 adder,

except for the first, which is considered a 3:1 adder. Thus,

the first level of adders is formed by the first CSAs (which

correspond to partial addition of the input operands). This

first ETL produces partial sum-words that are added to a

second level of CSAs (together with the last input operand
if Nop is even) and so on, in such a way that each ETL of

CSAs halves the number of inputs to the next level.
Therefore, the total ETLs in this hypothetical tree are

The delay of this tree is approximately L times the delay

of a single ETL. However, the delay of the carry-chain is

comparatively low, but not null. Let us consider just two

global values for the delay: dcarry, which is the delay for

the path between the carry inputs (Ci) of two consecutive
CSAs and dsum, which is the delay from one general input

of a CSA (A or B) to a general input of a directly

connected CSA, i.e., the time taken by the data to go from

an ETL to the next one. Even under this simplified

scenario, it is unfeasible to obtain a general analytical

expression for the delay of our compressor tree structure.

On each ETL, the propagation through carry-chains and

the general paths are overlapped and this overlap depends

on multiple factors.

First, it depends on the relative relationship between the

values of dcarry and dsum (which is associated with the
FPGA family used). Second, it depends on the number of

operands that affect both the delay of the carry-chain of

each ETL and the internal structure of the hypothetical

tree. Even though the former could be expressed as an

analytical formula, the latter cannot be expressed in this

way (especially when Nop-1 is not a power of two).

However, it is possible to bound the critical path delay by

considering two extreme options.

One extreme situation occurs when the delay of the whole

carry-chain corresponding to each ETL (dcarry _ the

number of CSAs of the ETL) is always greater than the
delay from an ETL to the next one (dsum). In this case, the

timing behaviour corresponds to a linear array and the

critical path is represented in Fig. 4. Initially, the first

carry out signal is generated from I1, I2, I3 in the first

CSA and then the carry signal is propagated through the

whole carry-chain until the output. Thus, the delay of the

critical path has two components corresponding to the

generation of the first carry signal and the propagation

through the carry-chain. If we characterize the delay from

a general input to the carry output in the first CSA

(including later routing) as dsum, then the estimated lower

bound for the delay of the compressor tree is dcarry:

III. COMPRESSORS

The conventional adders are the chain of Full adders
which generates carries and sum at each level. There was a

delay while generating the Final MSB bits of result.

During multiplication, Booth’s Algorithm or any

conventional/Modified approach can be used. But during

the partial product addition, the conventional adders are

not enough to reach the time constraints. The normal adder

structure for n bit addition is shown in figure 5 which adds

two numbers with n number of bits but the output is not

valid till the last MSB bit not appears. The carry travels

through the adder to adder. This generates a delay which is

consuming for carry propagation and ultimately efficiency

of total circuit gets decreases.

Fig 5: Conventional Adder structure for n bit addition generating n bit

sum and 1 bit carry

A. 5:2 COMPRESSOR

A simple implementation of the (5, 2) compressor is to

cascade three (3, 2) full adders in a hierarchical structure,

as shown in Figure 6. The block diagram of a (5:2)

compressor shown in Figure 8 has seven inputs and four

outputs. Five of the inputs are the primary inputs I1, I2, I3,

I4 and I5 and two other inputs, Cinl and Cin2. The

architecture is connected in such a way that five of the

inputs come from the same bit position of the weight j

while other two inputs (Cinl and Cin2) are fed from the

neigh-boring position j-1(known as carry-in). The outputs
of 5:2 compressor consists of one bit in the position j

(sum) and two bits in the position j+1 (cout1, cout2,

carry).

Fig 6: 5:2 Compressor general structure

This architecture has a critical path delay of 6 XOR gates.

The alternative implementation shows that this design has

ISSN (Online) 2321-2004
ISSN (Print) 2321-5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 3, Issue 2, February 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2015.3230 145

a critical path delay of 4XOR + 1MUX unlike the
conventional implementation with a delay of 5XOR.

Fig 7: Alternative implementation of 5:2 compressor

IV. SIMULATION AND EXPERIMENTAL

RESULTS

A. LINEAR ARRAY STRUCTURE

i. Simulation result

 Fig 8:Simulation result of Linear array structure
ii. Synthesis report

Fig 9: Synthesis report of linear array structure

B. COMPRESSOR TREE

i. Simulation result

 Fig 10: Simulation result of compressor tree

ii. SYNTHESIS REPORT

Fig 11: Synthesis report of compressor tree

V. TABULATION RESULT

 logic delay

Linear array

structure

 10.811ns

Compressor tree 10.453ns

Fig.12.Tabulation results of redundant adder structures

VI. CONCLUSION

Efficiently implementing CS compressor trees on FPGA,

in terms of area and speed, is made possible by using the

specialized carry-chains of these devices in a novel way.

Similar to what happens when using ASIC technology, the

proposed compressor trees lead to marked improvements
in speed compared to CS linear array tree approaches and,

in general, with no additional hardware cost. Furthermore,

the proposed high-level definition of CSA arrays

facilitates ease-of-use and portability, even in relation to

future FPGA architectures, because they will probably

remain a key element in the next generations of FPGA.

We have compared our architectures, implemented on

different FPGA families, to several designs and have

provided a qualitative and quantitative study of the

benefits of our proposals.

ACKNOWLEDGMENT

I owe my heartfelt gratitude to God almighty for all the

blessings showered on me during this endeavour. I take

this opportunity to express my sincere gratitude to all the

people who have been instrumented in bringing out this

work to the correct form. I thank my internal guide Mr.

JINU ISAAC KURUVILLA, Asst. Professor, Electronics
and Communication Engineering Department for his

proper guidance and support during the course of this

seminar. I also thank the Staff members of Electronics and

Communication Engineering Department, for their co-

operation for the completion of the seminar. Finally I

thank my friends, classmates and family for providing me

the strength and endurance.

REFERENCES

[1] “Multioperand Redundant Adders on FPGAs” Javier Hormigo,

Julio Villalba, Member, IEEE, and Emilio L. Zapata IEEE

transactions on computers, vol. 62, no. 10, october 2013.

[2] V.G. Oklobdzija, D. Villeger, S. S. Liu, “A Method for Speed

Optimized Partial Product Reduction and Generation of Fast

Parallel Multipliers Using and Algorithmic Approach”, IEEE

Transaction on Computers, Vol. 45, No 3, March 1996.

[3] Pallavi Devi Gopineedi, Hamid R. Arabnia. 2012. Novel and

Efficient 4:2 and 5:2 Compressors with Minimum number of

Transistors Designed for Low-Power Operations. Georgia : Athens,

2012.

[4] K. Prasad and K. K. Parhi, “Low-power 4-2 and 5-2 compressors,”

in proc.signals,systems and computers, vol. 1, pp. 129-133, Nov.

2001.

