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Abstract: In many of digital systems like graphic processors, digital signal processors fast parallel multiplication using 

adder trees are present. To speed up the computation like addition is very important. This paper presents different 

approaches to the efficient implementation of compress tree adders on FPGAs. Through a fair comparison we present a 

proper compressor selection approach to get minimum XOR delay. This paper will help to choose a proper compressor 

for fast multiplication. This approach is defined in parameterizable HDL code, which makes it compatible with any 

FPGA family.  
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I. INTRODUCTION 

Addition is one of the basic process in large computations. 

Different types of adders are available for large addition. 

The delay of addition will determine the overall 

performance of the system. Most of the time consumed by 

adder is due to carry propagation. So to reduce the delay 

some fast adder structures are present which will calculate 
the result in reduced time. Large addition processes are 

commonly seen in multipliers for reducing the partial 

products. Compressors are used to reduce the partial 

products of multiplication during an addition process. 
  

ADDER STRUCTURES 

Adders are used in different aspects. It is generally 

recognized that most of the time consumed by adders is 

due to carry propagation, so to reduce the propagation 

time different binary adder schemes are used each have 

their own characters, such as area and energy dissipation. 

So to choose a adder with specific requirement and 
constraint is important. Here the function of some 

commonly used adders is given. 
 

A.REDUNDANT ADDERS 

In redundant adders there is no carry propagation is 
required ie, independent of numbers of bits of the adders. 

The main aim of the redundant adder is to reduce the 

addition time. But this adder has some disadvantages, the 

increase of the number of bits needed for representation of 

a number and some of operations can’t be performed in 

redundant numbers such as magnitude comparison or sign 

detection. 
 

B.CARRY SAVE ADDERS 

Carry-save adder (CSA) and full adder have same circuit, 

as show in Figure 1. 

 
Fig1: Function of Carry-save adder 

 

The carry in signal is considered as an input of the CSA, 

and the carry out signal is considered as an output of the 

CSA. Figure 2 show the CSA compute flow and Table 1 

will show the CSA working. 

 
Fig 2: CSA computation 

 
Table 1: CSA Computation 
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The computation can be in two steps, first we compute S 

and C using a CSA, and then we use CPA to compute the 
total sum. Here the carry signal and the sum signal can be 

computed independently to get only two n -bits numbers. 

A CPA is used for the last step computation and the carry 

propagation exists only in the last step. 

II. MULTI-OPERAND ADDITION 

  For adding several operands we have adder tree, such as 

Wallace tree, Dadda tree, and carry save adder tree and so 

on. In this paper, carry save adder tree structure is used. 

There are two methods reduction by rows and reduction by 

columns, carry save adder tree belong to first method 

which consist of modules to reduce the rows are called 

adders and reduce the columns are called counters. 
 

A. CARRY SAVE ADDER TREE 

The carry save adder tree can be used to add three 

operands in two’s complement representation and produce 

a result as the sum of two vectors. A 3-to-2 reduction is 

called [3:2] adder, and using this tree, we can use a [ p :2] 

adder to reduce p bit-vectors to 2 bit-vectors using CSAs. 
We can use [3:2] adders to reduce the rows and get 2 bit 

vectors. No propagation of the carries is required except 

on the last two rows which result in a speed up of the 

computation. From Figure 3, the number of input vectors 

was reduced by the rows. Finally, we should estimate the 

numbers of levels of the CSA tree as 

 

where k is the number of input operands. 

 
Fig 3: Reduction by rows 

B. LINEAR ARRAY STRUCTURE 

 In the previous approach, specialized carry resources are 

only used in the design of a single 4:2 compressor, but 

these resources have not been considered in the design of 

the whole compressor tree structure. To optimize the use 

of the carry resources, we propose a compressor tree 

structure similar to the classic linear array of CSAs. 

However, in our case, given the two output words of each 
adder (sum-word and carry-word), only the carry-word is 

connected from each CSA to the next, whereas the sum 

words are connected to lower levels of the array. Fig.4 

shows an example for a 5:2 compressor tree designed 

using the proposed linear structure, where all lines are N 

bit width buses, and carry signal are correctly shifted. For 

the CSA, we have to distinguish between the regular 

inputs (A and B) and the carry input (Ci in the figure), 

whereas the dashed line between the carry input and 

output represents the fast carry resources. 

 
Fig 4: N-bit width 5:2 linear array compressor tree 

 With the exception of the first CSA, where Ci is 

used to introduce an input operand, on each CSA Ci is 

connected to the carry output (Co) of the previous CSA, as 

shown in Fig. 4.Thus, the whole carry-chain is preserved 

from the input to the output of the compressor tree (from 

I0 to Cf). First, the two regular inputs on each CSA are 

used to add all the input operands (Ii). When all the input 

operands have been introduced in the array, the partial 

sum-words (Si) previously generated are then added in 

order (i.e., the first generated partial sums are added first) 
as shown in Fig. 4. In this way, we maximize the overlap 

between propagation through regular signals and carry-

chains. 

Regarding the area, the implementation of a generic 

compressor tree based on N bit width CSAs requires Nop 

_ 2 of these elements (because each CSA eliminates one 

input signal) Therefore, considering that a CSA could be 

implemented using the same number of resources as a 

binary CPA, the proposed linear array, the 4:2 compressor 

tree, have approximately the same hardware cost. 

In relation to the delay analysis, from a classic point of 

view our compressor tree has Nop-2 levels. This is much 
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more than a classic Wallace tree structure and, thus, a 

longer critical path. Nevertheless, because we are targeting 
an FPGA implementation, we temporarily assume that 

there is no delay for the carry-chain path. Under this 

assumption, the carry signal connections could be 

eliminated from the critical path analysis and our linear 

array could be represented as a hypothetical tree. To 

compute the number of effective time levels (ETL) of this 

hypothetical tree, each CSA is considered a 2:1 adder, 

except for the first, which is considered a 3:1 adder. Thus, 

the first level of adders is formed by the first CSAs (which 

correspond to partial addition of the input operands). This 

first ETL produces partial sum-words that are added to a 

second level of CSAs (together with the last input operand 
if Nop is even) and so on, in such a way that each ETL of 

CSAs halves the number of inputs to the next level. 
Therefore, the total ETLs in this hypothetical tree are

 
The delay of this tree is approximately L times the delay 

of a single ETL. However, the delay of the carry-chain is 

comparatively low, but not null. Let us consider just two 

global values for the delay: dcarry, which is the delay for 

the path between the carry inputs (Ci) of two consecutive 
CSAs and dsum, which is the delay from one general input 

of a CSA (A or B) to a general input of a directly 

connected CSA, i.e., the time taken by the data to go from 

an ETL to the next one. Even under this simplified 

scenario, it is unfeasible to obtain a general analytical 

expression for the delay of our compressor tree structure. 

On each ETL, the propagation through carry-chains and 

the general paths are overlapped and this overlap depends 

on multiple factors. 

First, it depends on the relative relationship between the 

values of dcarry and dsum (which is associated with the 
FPGA family used). Second, it depends on the number of 

operands that affect both the delay of the carry-chain of 

each ETL and the internal structure of the hypothetical 

tree. Even though the former could be expressed as an 

analytical formula, the latter cannot be expressed in this 

way (especially when Nop-1 is not a power of two). 

However, it is possible to bound the critical path delay by 

considering two extreme options. 

One extreme situation occurs when the delay of the whole 

carry-chain corresponding to each ETL (dcarry _ the 

number of CSAs of the ETL) is always greater than the 
delay from an ETL to the next one (dsum). In this case, the 

timing behaviour corresponds to a linear array and the 

critical path is represented in Fig. 4. Initially, the first 

carry out signal is generated from I1, I2, I3 in the first 

CSA and then the carry signal is propagated through the 

whole carry-chain until the output. Thus, the delay of the 

critical path has two components corresponding to the 

generation of the first carry signal and the propagation 

through the carry-chain. If we characterize the delay from 

a general input to the carry output in the first CSA 

(including later routing) as dsum, then the estimated lower 

bound for the delay of the compressor tree is dcarry: 

 

III. COMPRESSORS  

The conventional adders are the chain of Full adders 
which generates carries and sum at each level. There was a 

delay while generating the Final MSB bits of result. 

During multiplication, Booth’s Algorithm or any 

conventional/Modified approach can be used. But during 

the partial product addition, the conventional adders are 

not enough to reach the time constraints. The normal adder 

structure for n bit addition is shown in figure 5 which adds 

two numbers with n number of bits but the output is not 

valid till the last MSB bit not appears. The carry travels 

through the adder to adder. This generates a delay which is 

consuming for carry propagation and ultimately efficiency 

of total circuit gets decreases. 

 
Fig 5: Conventional Adder structure for n bit addition generating n bit 

sum and 1 bit carry 

A. 5:2 COMPRESSOR 

A simple implementation of the (5, 2) compressor is to 

cascade three (3, 2) full adders in a hierarchical structure, 

as shown in Figure 6. The block diagram of a (5:2) 

compressor shown in Figure 8 has seven inputs and four 

outputs. Five of the inputs are the primary inputs I1, I2, I3, 

I4 and I5 and two other inputs, Cinl and Cin2. The 

architecture is connected in such a way that five of the 

inputs come from the same bit position of the weight j 

while other two inputs (Cinl and Cin2) are fed from the 

neigh-boring position j-1(known as carry-in). The outputs 
of 5:2 compressor consists of one bit in the position j 

(sum) and two bits in the position j+1 (cout1, cout2, 

carry). 

 

Fig 6: 5:2 Compressor general structure 

This architecture has a critical path delay of 6 XOR gates. 

The alternative implementation shows that this design has 



ISSN (Online) 2321-2004 
ISSN (Print) 2321-5526 

 
        INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING 
                        Vol. 3, Issue 2, February 2015 

 

Copyright to IJIREEICE                    DOI  10.17148/IJIREEICE.2015.3230               145 

a critical path delay of 4XOR + 1MUX unlike the 
conventional implementation with a delay of 5XOR.  

 
Fig 7: Alternative implementation of 5:2 compressor 

 

IV. SIMULATION AND EXPERIMENTAL 

RESULTS 

A. LINEAR ARRAY STRUCTURE 

i. Simulation result 

 

             Fig 8:Simulation result of Linear array structure 
ii. Synthesis report 

 
Fig 9: Synthesis report of linear array structure 

 

B. COMPRESSOR TREE 

i. Simulation result 

 
                       Fig 10: Simulation result of compressor tree 

 

ii. SYNTHESIS REPORT 

 
Fig 11: Synthesis report of compressor tree 

 

V. TABULATION RESULT 

         logic          delay  

Linear array 

structure 

 10.811ns 

Compressor tree 10.453ns 

Fig.12.Tabulation results of redundant adder structures 

 

VI. CONCLUSION 

Efficiently implementing CS compressor trees on FPGA, 

in terms of area and speed, is made possible by using the 

specialized carry-chains of these devices in a novel way. 

Similar to what happens when using ASIC technology, the 

proposed compressor trees lead to marked improvements 
in speed compared to CS linear array tree approaches and, 

in general, with no additional hardware cost. Furthermore, 

the proposed high-level definition of CSA arrays 

facilitates ease-of-use and portability, even in relation to 

future FPGA architectures, because they will probably 

remain a key element in the next generations of FPGA. 

We have compared our architectures, implemented on 

different FPGA families, to several designs and have 

provided a qualitative and quantitative study of the 

benefits of our proposals. 
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