
ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue 12, December 2014

Copyright to IJIREEICE www.ijireeice.com 2286

Application with MUCOS RTOS on embedded

systems

Elumalai.R
1
, A.R Purushotham Reddy

2
, Pushpa.M.K

1
, Jyothirmayi.M.

1
, M.D.Nandeesh

1

Department of Electronics & Instrumentation Engineering, MS Ramaiah of Institute of Technology, Bangalore
1

FICE, Bangalore
2

Abstract: Real-time operating system (RTOS) is a very useful tool for developing the application on embedded boards

with least software development effort. Though number of RTOS products are available in the market, µC/OS-II is a

freeware with minimum facility and more popular among the hobbyist, researchers and small embedded system

developers. The µC/OS-II supports preemptive scheduling which is not efficient with respect to processor utilization.

As a result, this may lead to missing deadline of the task assigned and hence may cause system failure. In this paper, a

Rate Monotonic scheduling (RM), which is a better scheduling method when compared to preemptive technique, is

implemented on µC/OS-II and its operation in terms of task execution and processor utilization are discussed. This

paper presents the RM Analysis (RMA) on µC/OS-II with two different types of hardware: 1) Low end microcontroller
i.e., 8051 based system and 2) High end system based on ARM9 is used. For the demonstration of RM Analysis, two

tasks, namely, 1) Advanced encryption standard (AES) and 2) Text message display and graphic display are

implemented. The software tools Keil IDE, SDCC compiler and Phillips Flash Magic are used for implementation of

tasks on 8051 embedded development board. The ARM developers Suite v1.2 and DNW are used for implementation

of tasks on ARM9 development board. In addition to the above said tasks, additional tasks like Real time clock

interface, graphical LCD interface and UART interface for communication with computer are also implemented. The

scaled-version of µC/OS-II with multiple tasks uses 4 kB of flash and 512 bytes of RAM in 8051 board. The entire

MUCOS RTOS in ARM9 with multiple tasks uses 29.23 kB of flash and 596.36 kB of RAM. The results obtained

indicate optimum utilization of processor with RMA scheduler for realizing low cost software for developing the

application on embedded boards with least software development effort.

Keywords: RTOS, Keil IDE, ARM9, AES, µC/OS-II and Microcontroller.

I. INTRODUCTION

Real-time operating system (RTOS) is useful for

developing the application on embedded boards with least

software development effort. The human effort needed for

implementing µC/OS-II is less compared to other RTOS‟s.

Among the available RTOS‟s µC/OS-II is suitable for

various controllers and processors, since it is low cost and

easily available. The µC/OS-II supports preemptive

scheduling and not efficient with respect to processor

utilization. Processor utilization is a measure of CPU

loading. Improving the CPU loading is difficult since

embedded processor needs to complete the tasks within
the deadlines.

The Rate Monotonic Analysis (RMA) helps to achieve

optimum CPU loading for running real-time tasks with

time deadlines. In RMA, most frequently used task gets

highest priority. Optimum utilization of resources by

meeting the deadlines is discussed in this paper.

A micro-kernel operating system (µC/OS-II) written by

John J Lebrosse is a freeware for peaceful research

purpose. The source code is written in C language which is

compliant to ANSI C format. It has about 10,000 lines of

source code with well-documented comments in the
source code. It is a well-tested source code and has been

ported to thousands of devices. It has a built-in preemptive

scheduler. But, it does not support a rate-monotonic

scheduler. In this paper, it is proposed to implement a rate-

monotonic scheduler in µC/OS-II and will be discussed in

this paper.

The microkernel approach is based on the idea of only

placing essential core real-time operating system functions

in the kernel, and other functionality is designed in

modules that communicate through the kernel via minimal

well defined interfaces. The microkernel approach results

in easy reconfigurable systems without the need to rebuild

the kernel. The µC/OS-II kernel is implemented

completely in software and is a well-used real-time

operating system for embedded systems. It is written as a

monolithic kernel in the language of ANSI C with a minor

part in assembler for context switching.
The paper is organized as follows. Section II describes

Configurable parameters for µC/OS-II. Section III

describes the implementation of scheduler on low-end and

high-end hardware board. Section IV describes the

analysis of results. Section V describes the conclusion of

this work.

This paper presents implementation of RMA in µC/OS-II.

For this, µC/OS-II is ported into Keil IDE [2] and RMA

code is appended to it. ROM image file is ported into 8051

based microcontroller flash and tested for scheduling with

RMA. MUCOS RTOS code is also ported in ARM 9
board and the performance parameters are discussed.

II. CONFIGURABLE PARAMETERS IN µC/OS-II

It is necessary to configure the parameters so that only the

required features are built into the target system. The code

ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue 12, December 2014

Copyright to IJIREEICE www.ijireeice.com 2287

size is reduced from 10,000 lines to 5,500 lines by suitable

configuration of parameters. This is needed to reduce the

memory requirements and to achieve optimum utilization

of resources for the required functions in 8051 hardware

board.

 Figure 1 shows the architecture of µC/OS-II. The files of

µC/OS-II is shown in figure 1. The application software is

the code written by the user in the main function to

perform several tasks. Processor independent codes are the
files which can be used in any hardware without the need

to configure it. Processor-specific and Application-specific

code can be modified to suit the application requirements.

The parameters that are configured in µC/OS-II are in file

os_cfg_r and os_cpu_asm. The parameters that are

configured in os_cfg_r with its explanation are given

below

#define OS_TICK_STEP_EN 1

/* Set to 1/0 to Enable/Disable tick stepping feature

respectively for uC/OS-View */
#define OS_MAX_TASKS 3 /* Max.

number of tasks in your application, MUST be >= 2 */

#define OS_LOWEST_PRIO 5 /* Defines

the lowest priority that can be assigned ... */

#define OS_TMR_CFG_TICKS_PER_SEC 10 /*

Rate at which timer management task runs (Hz) */

The other features like semaphores, timers, queues and

memory management are not needed. Hence, they are set

to „0‟ to disable these features.

The size of the OSStack and timer delay is configured in

file os_cpu_asm. The routines are written in assembly
language. The pseudo source code of main() function is

given below.

void main(void)

{

 OSInit();/*Initialize OSStack and memory blocks */

TargetInit(); /* Initialize the target hardware */

OSTaskCreate(Task0,(void)0,&

Task0Stack[MaxStkSize-1],0);/*Create Task0 with

priority 0*/
OSTaskCreate(Task1,(void

*)0,&Task1Stack[MaxStkSize-1],1);/*Create Task1 with

priority1*/

OSTaskCreate(Task2,(void

*)0,&Task1Stack[MaxStkSize-1],2);/*Create Task2 with

priority2*/

OSStart();// start muti-tasking

}/*end of main*/

The above code consists of OS initialization, target

initialization, Creation of tasks and start multi-tasking

functions. The priorities are assigned to tasks so that a
task with a lowest priority is executed most frequently.

This is the scheduling approach which is known as rate-

monotonic scheduler approach.

III. IMPLEMENTATION OF RATE-MONOTONIC

SCHEDULER ON A HARDWARE BOARD

 A rate-monotonic scheduler is designed and implemented

with a low-end and an high-end system. The

microcontroller 8051and ARM 9 controller used in this

work will be discussed in this paper.

The hardware implementation has been developed in

Microcontroller (8051) Embedded Development Kit which

consists of a 4 x 4 keypad, 2 x 16 LCD, 8 LEDs and an
RS-232 port for serial communication. An external crystal

of clock frequency 11.0592 MHz is used in the board. The

board details are shown in the figure 2.

Application Software

(Processor
Independent

Code)
OS_CORE.C

OS_MBOX.C

OS_MEM.C

OS_Q.C

OS_SEM.C

OS_TASK.C

OS_TIME.C

µCOS_II.C

µCOS_II.H

(Application
Specific code)

OS_CFG.H

INCLUDES.H

(Processor Specific Code)
OS_CPU.H

OS_CPU_A.ASM

OS_CPU_C.C

CPU Timer

Software

--

-------------------------- Hardware

Fig. 1 µC/OS-II architecture

RS-232

Port

Interfac

e

16x2

LCD

8051 Micro-

controller with a ZIP

socket

8

LEDs

Fig. 2 8051 hardware board used for testing rate-monotonic schedule

ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue 12, December 2014

Copyright to IJIREEICE www.ijireeice.com 2288

The MUCOS RTOS is also implemented in ARM 9

hardware board which consists of ARM 9 controller

(S3C2440), 3.5” TFT LCD, USB port, RS-232 port,

Ethernet port, JTAG port, 4 user-defined interrupt

switches and NAND/NOR flash interface. The system

clock frequency used is 400 MHz. The board details are

shown in figure 3.
The software implementation has been developed in an

IDE (Integrated Development Environment) with keil

compiler and Phillips Flash Magic tool [3] for 8051

hardware board. SDCC compiler is used to implement the

encryption/decryption task in 8051 board. The software

implementation for ARM 9 hardware board is carried out

using ARM Developer Suite (ADS) v1.2, DNW and

HyperTerminal tool. The software tools like Keil IDE,

SDCC, ADS are used to compile and build the project.

The other tools like Phillips Flash Magic, DNW and

Hyper Terminal are used to interact with the target
hardware board.

The source code for the tasks described in TABLE I is

written in C language and compiled with Keil compiler.

The hex file generated by the compiler is used for

programming the micro-controller (P89V51RD2) with

Phillips Flash Magic tool. The user-defined application is

written in file main.c. It consists of user-defined tasks to

be performed by assigning the priorities in an infinite loop.

The memory requirements projected after compilation of

code in 8051 and ARM 9 are discussed in Table III and

Table V respectively.

The CPU utilization or time-loading factor (U) is a

measure of the percentage of non idle processing. A

system is said to be time-overloaded if U > 100%. Systems

that are too highly utilized are undesirable because

changes or additions cannot be made to the system without

risk of time-overloading. The target for U as 69% in rate-

monotonic systems gives a very useful result in the theory

of real-time systems.

The theoretical results observed are close to that of

experimental results. The results are computed for four

different tasks and are shown in Table I. The value of U
obtained is 70.18% for the four tasks shown in Table I.

Theoretical value of CPU utilization = 75.68%

Obtained value of CPU utilization = 70.18%

TABLE I:

EXECUTION TIME FOR VARIOUS TASKS IN 8051

TABLE II:

AES RESULTS IN 8051 WITH SDCC TOOL

LCD_display: The data is displayed in the LCD by

initializing the values in the command register. The

function is executed within 8s.

LED_display1: LED is turned ON/OFF to indicate

completion of a task. To perform this task, data has to be

written to o/p port of microcontroller. The function is
executed within 8 s.

LED_display2 and LED_display3: It is similar to the

LED_display1 task.

AES results are discussed in Table II and they are

implemented independently with SDCC tool without any

usage of RTOS. The memory requirement of the above

tasks in 8051 controller is shown in Table III below. The

results obtained in ARM 9 for multiple tasks are discussed

in Table IV.

TABLE III:

MEMORY REQUIREMENT OF 8051CONTROLLER

Power

Supply DC

Jack

3.5 inch

TFT of

320x240

resolution

4 user-defined

interrupt

switches

NAND/NOR

Flash

Interface

Fig. 3: ARM 9 hardware board used for testing rate-monotonic

scheduler

USB

port

RS-232

port

Etherne

t port

10- Pin JTAG

port Interface

Reset

Switch

Task

numb

er

Task name

ei

(executi

on time

of a

task)

pi

(execution

period of a

task)

1 LCD_display0 1 s 8 s

2 LED_display1 2.13 s 8s

3 LED_display2 1.42 s 8 s

4 LED_display3 1.065 s 8 s

Serial

no:-

Types of

Memory

Memory size

(Bytes)

1 Code memory 4897 bytes

2 Data memory 410 bytes

Task

name

Memory

(Bytes)

Time

(milliseconds)

Encryption

with 10

rounds

358 85

Encryption

with 14

rounds

395 100

Decryption

with 10

rounds

476 105

Decryption

with 14

rounds

498 115

ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue 12, December 2014

Copyright to IJIREEICE www.ijireeice.com 2289

TABLE IV:

EXECUTION TIME FOR VARIOUS TASKS IN ARM 9

Theoretical value of CPU utilization = 75.68%

Obtained value of CPU utilization = 0.17775 %

The Main Task in turn creates other tasks as Task 0, Task
1 and Task 2. It is used to initialize Graphical LCD and

UART interface. Main Task and Task 0 is used to display

messages in the hyper terminal of monitor. Task 1 is used

to display a 2-digit decimal counter in the LCD. Task2 is

used to display the date and time of a Real-time clock

(RTC).
TABLE V:

MEMORY REQUIREMENT OF ARM 9 CONTROLLER

Comparison of results

 The results discussed above are compared with respect to

CPU utilization and are discussed in Table VI below.

TABLE VI:

COMPARISION OF RESULTS WITH RESPECT TO OPTIMUM CPU

UTILIZATION

The results indicate that optimum CPU utilization is not

only dependent on the scheduling technique employed in

an embedded system. But, it is also dependent on the

processing power of controller and the complexity of the

application code. A qualitative analysis of the results
obtained with respect to 8051 controller and ARM 9

controller indicate that CPU utilization in ARM 9

controller is 395 times less than that of 8051 controller. It

is due to the following major factors discussed below.

 7-stage pipelining

 RISC architecture

 32-bit controller

 Higher clock speed

 Cache memory

IV.ANALYSIS OF RESULTS

The execution time for various tasks is shown in Table I

and table IV. The system can be operated with 69% CPU
utilization but in this work we could operate up to 70.18%

in 8051 hardware board. This is due to the fact that the

interfaces in the board are limited. Also, there are other

constraints like limited ON-chip memory, limited number

of ports and lower processing power. If the tasks like

displaying the data on LCD, indicating the status of task

by turning ON/OFF LEDs, scanning and detecting the key

pressed in keypad has to be done continuously for an

infinite duration of time. This causes a significant delay in
the RTOS. Most of these constraints are reduced to a

larger extent in a high-end system like ARM9. The CPU

utilization in a high-end system is less as compared to a

low-end system and it is discussed in Table VI.

IV. CONCLUSIONS

The µC/OS-II is ported onto Keil IDE and RMA analysis

result is discussed in this paper. ROM image file is ported

onto 8051 based microcontroller flash as well as ARM9

controller and tested for scheduling with RMA. The entire

µC/OS-II with multiple tasks uses 4 kB of flash and 512

bytes of RAM. The entire MUCOS RTOS in ARM9 with
multiple tasks uses 29.23 kB of flash and 596.36 kB of

RAM. The results have indicated optimum utilization of

processor with RMA scheduler for realizing low cost

software and hardware for developing embedded system.

The overall CPU utilization was 70.18% with RMA

approach in 8051 whereas in ARM9 controller it is

0.17775%. The result obtained indicates optimum

utilization of processor with RMA scheduler for realizing

low cost software for developing the application on

embedded boards with least software development effort.

REFERENCES

[1] F. Engel, G. Heiser, I. KuZ, S. M. Petters and S. Ruocco,

“Operating Systems on SoCs: A Good Idea?,” in ERTSI in

conjunction with 25th IEEE RTSS04, Lisbon, Portugal, December 2004.

[2] Furunas, J. “Benchmarking of a Real-Time System that utilises a

booster.” In International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA200), June, 2000.

[3] H. Hartig, M. Hohmuth, J. Liedkte, S. Schonberg and J. Wolter,

“The performance of µ-Kernel-Based Systems”, in proceedings of

the 16th ACM symposium on Operating Systems Principles, p 66-

77, Saint Malo, France, 1997.

[4] L. Johansson and T. Samuelsson, “Integration of an Ultra-fast Real-

Time Accelerator in the Real-Time Operating System µC/OS-II”,

Master Thesis report, Malardalen University, Vasteras, Sweden,

October 2004.

[5] P. Kohout, B. Ganesh and B. Jacob, “Hardware Support for Real-

Time Operating Systems”, in Conference on Hardware/Software

codesign and system synthesis of contents, p.45-51, Newport

Beach, USA, 2003.

[6] P. Kuacharoen, M. A. Shalan and V. J. Mooney III, “A

Configurable Hardware Scheduler for Real-Time Systems,” in

Proceedings of the International Conference on Engineering of

Reconfigurable Systems and Algorithms (ERSA´03), p 96-101, Las

Vegas, USA, June 2003.

[7] J. Liedkte, “Toward Real Microkernels,” in Communications of the

ACM, vol. 39, No 9, September 1996.

[8] L. Lindh, and F. Stanischewski, “FASTCHART – A Fast Time

Deterministic CPU and Hardware Based Real-Time-Kernel.” In

IEEE, Euromicro workshop on Real-Time Systems, June 1991.

[9] L. Lindh, T. Klevin, and J. Furunas, “Scalable Architecture for

Real- Time Applications – SARA”. Swedish National Real-Time

Conference SNART99 Linkoping, Sweden, August, 1999.

[10] T. Nakano, Y. Komatsudaira, A. Shiomi and M. Imai. VLSI

implementation of a Real-time Operating System. Proc. of

ASPDAC '97, pp. 679-680, January, 1997.

Serial

no:-

Types of

Memory

Memory size

(kB)

1 Code memory 29.23 kB

2 Data memory 596.36 kB

Task

number

Task

name

ei

(execution

time of a

task)

pi (execution

period of a

task)

1
Main
Task

16.66 ms 30s

2 Task 0 16.66 ms 30s

3 Task 1 3.33 ms 30s

4 Task 2 16.66 ms 30s

Number

of Tasks

Theoretical

value

Practical

value in 8051

controller

Practical

value in

ARM 9

controller

4 75.68% 70.18% 0.17775%

