
ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue 7, July 2014

Copyright to IJIREEICE www.ijireeice.com 1733

Implementation of Intrusion Detection System

using GA

Ms.Lata Jadhav
1
, Prof.C.M.Gaikwad

2

 Department of Comp. Science & Engineering, Government College of Engineering, Aurangabad, India 1

 Department of Information Technology, Government College of Engineering, Aurangabad, India 2

Abstract: In recent years, computer systems are facing increased number of security threats because of rapid expansion

of computer networks. Different soft computing techniques have been proposed in recent years to develop the Intrusion

Detection System. This paper presents an effective genetic algorithm (GA) approach for intrusion detection and the

software implementation. The Genetic algorithm is used to derive the set of classification rules from audit data and

support confidence framework is utilizes as fitness function to judge the quality of each rule. Then the generated rules

are used to detect or classify network intrusions. The proposed method is easy to implement while providing the

flexibility to either generally detect network intrusions. Experimental results show the more effective detection rates

based on benchmark DARPA data sets on intrusions.

Keywords: Genetic algorithm, Intrusion Detection, support confidence framework.

I. INTRODUCTION

When an intruder attempts to break into an information

system or performs an action not legally allowed, we refer

to this activity as an intrusion. Intruders can be classified

into two groups, external and internal. The external

intruders refer to those who do not have authorized access

to the system and who attack by using various penetration
techniques. The internal intruders refer to those with

access permission who wish to perform unauthorized

activities [2]. Intrusion prevention technique like firewall,

filtering router policies fails to stop much type of attacks.

Intrusion detection systems are becoming an important

part of your computer and network security. An intrusion

detection system is used to detect several types of

malicious behaviours that can compromise the security

and trust of a computer system. This includes network

attacks against defenceless services, data driven attacks,

host based attacks like unauthorized logins and access to
sensitive files, and malware (viruses, trojan horses and

worms). There are basically two categories of intrusion

detection systems (IDSs): misuse detection and anomaly

detection Misuse detection systems detect intruders with

known patterns, where as anomaly detection systems

identify deviations from normal network behaviours and

alert for potential unknown attacks. The IDSs can also be

classified into two categories depending on where they

look for intrusions. A host-based IDS monitors activities

associated with a particular host, and a network-based IDS

listens to network traffic.

 In this paper, we present a GA-based approach to
network misuse detection. GA is chosen because of some

of its nice properties, e.g., robust to noise, no gradient

information is required to find a global optimal or sub-

optimal solution etc. Using GAs for network intrusion

detection has proven to be a cost-effective approach. The

software is experimented using DARPA data sets on

intrusions, which has become the de facto standard for

testing intrusion detection systems[3].

II. GENETIC ALGORITHM

Genetic Algorithms is an optimization technique using an

evolutionary process[4][5]. A solution of a problem is

represented as a data structure known as chromosome. An

evaluation function is used to calculate the goodness of

each chromosome according to the desired solution; this

function is known as “Fitness Function”. GA process

begins with series of initial solutions is initially generated

(random population) and through a combination of

algorithms similar to an evolutionary process (often a
combination of elitism, crossover, and mutation) the

process works towards evolving solutions having better

“goodness” as evaluated by the fitness function.

 In every generation the fitness of these

chromosomes is checked. To determine the fitness of the

chromosomes fitness function is used and then fittest

chromosomes are selected. The chromosomes which have

poor fitness value are discarded.

Fig 1.Structure of simple genetic algorithm

The selected fit chromosomes undergo crossover, mutation

to form a new population. This new population is used for

the next generation. Normally, the algorithm terminates

http://www.ijireeice.com/

ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue 7, July 2014

Copyright to IJIREEICE www.ijireeice.com 1734

when either a set number of generations or a satisfactory

fitness level has been achieved. Genetic algorithm is

composed of three operators. They are reproduction or

selection, crossover or recombination and mutation.

The basic concepts of Genetic Algorithms are simple, yet

the process of choosing the gene representation, a good

fitness function, and even application of the recombination

[Whitley] can be the key to successful use of Genetic
Algorithms.

A. DARPA Data Set

A key dependency of the work done by Gong and Li and

as will be shown with netGA is the usage of DARPA data

sets for training data. Creating this training data is not a

trivial task and is considered beyond the scope of this

project. The MIT Lincoln laboratory provides an excellent

description of the process followed for creating the data.

This DARPA training data is actually a result of test

network traffic data, a Sun Microsystems Solaris and the

use of Sun's Basic Security Module[Sun]. The data sets
used in both papers were created in 1998[3]. Today's

attacks have changed with regard to rule based systems,

but the training data still works well for developing

Genetic Algorithms.

III.GA WITH IDS

A.Data Representation

The way that Genetic Algorithms are used with netGA is

that rules are randomly created to match attacks encoded

as a integer array with the seven elements shown in Table

1. The first six attributes of the chromosome match the

gene characteristics of an attack. The seventh attribute
describes the attack type that the first six rules identify

when they match. This representation uses the same

approach as used by Gong[2].

TABLE 1.Chromosome Representation for Rule

Feature Name Format Number of

genes

 Duration h:m:s 3

Protocol Int 1

Source_port Int 1

Destination_port Int 1

Source_IP a.b.c.d 4

Destination_IP a.b.c.d 4

Attack_name Int 1

In order to evaluate a rule represented by a chromosome,

the DARPA audit data is parsed and loaded into a list of

audit connections. The attributes loaded from the DARPA

audit data directly match the attributes used in the

chromosome representation. The gene representation

follows the simple rule if A then B, where if the first six

attributes are logically and-ed together are true(A), then

the rule matches the attack (B). Following is the sample

example[4] that classifies a network connection as the

denial-of-service attack Neptune.

if (duration = “0:0:1” and protocol = “finger” and

source_port = 18989 and destination_port = 79 and

source_ip = “99.19.99.19” and destination_ip =

“192.168.254.10”) then (attack_name = “Neptune”)

 Above rule specifies that if a network packet is originated

from IP address 99.19.99.19 and port number 18989 and
send to IP address 192.168.254.10 at port number 79

using finger protocol for duration of connection 1 second

then most likely it is Neptune attack which eventually

make destination host out of service.

B. Fitness Function

Every chromosome is selected after applying fitness

function to them. To determine the fitness of a rule, the

support confidence framework [6] is used. If a rule is

represented as if A then B [4] then the fitness of the rule is
as follows:

support = |A and B| / N

confidence = |A and B| / |A|

fitness = w1 * support + w2 * confidence

Here, N is the total number of network connections in the

audit data, |A| stands for the number of network

connections matching the condition A, and |A and B| is the

number of network connections that matches the rule if A

then B. The weights w1 and w2 are used to control the

balance between the two terms and have the default values
of w1=0.2 and w2=0.8.

C. Crossover and Mutation

Crossover is one of the important steps in GA. There are

three types of crossover techniques. They are one point,

two point and uniform cross over technique. In this paper

we used two point crossovers. Crossover involves

splitting two chromosomes and then combining first part

of a chromosome with the second part of the other

chromosome.

Each gene in each chromosome is checked for possible

mutation by generating a random number between zero
and one and if this number is less than or equal to the

given mutation probability then the gene value is changed.

Mutations create diversity to search in domain regions

that may otherwise be excluded.

D. Detection Algorithm Overview

Listing 1 shows the major steps of the employed detection

algorithm as well as the training process. It first generates

the initial population, sets the defaults parameters, and

loads the network audit data. Then the initial population is

evolved for a number of generations.

Algorithm: Rule set generation using genetic algorithm.
Input: Network audit data, number of generations, and

population size.

Output : A set of classification rules.

http://www.ijireeice.com/

ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue 7, July 2014

Copyright to IJIREEICE www.ijireeice.com 1735

1. Initialize the population

2. W1 = 0.2, W2 = 0.8, T = 0.5

3. N = total number of records in the training set

4. For each chromosome in the population

5. A = 0, AB = 0

6. For each record in the training set

7. If the record matches the chromosome

8. AB = AB + 1
9. End if

10. If the record matches only the “condition” part

11. A = A + 1

12. End if

13. End for

14. Fitness = W1 * AB / N + W2 * AB / A

15. If Fitness > T

16. Select the chromosome into new population

17. End if

18. End for

19. For each chromosome in the new population
20. Apply crossover operator to the chromosome

21. Apply mutation operator to the chromosome

22. End for

23. If number of generations is not reached, then goto

line 4
Listing 1. Major steps of the detection algorithm.

In each of the qualities rules are firstly calculated, then a

number of best-fit rules are selected, and finally the GA

operators are applied to the selected rules. The training

process starts by randomly generating an initial population

of rules (line 1). The weights and fitness threshold values

are initialized in line 2. Line 3. Calculates the total number

of records in the audit data. Lines 4-18 calculate the fitness

of each rule and select the best-fit rules into new

population. Lines 19-22 apply the crossover and mutation

operators to each rule in the new population. Finally, line

23 checks and decides whether to terminate the training
process or to enter the next generation to continue the

evolution process.

IV.IMPLEMENTATION AND RESULTS
The genetic algorithm for rule generation is implemented

using Java language (JDK6) in NetBeans7.4.The front end

development environment used is NetBeans7.4. Two

subsets were developed from DARPA 1998 data.

 Table 2 gives the distributions of record types in both

training and testing data set. The first row gives the
number of normal network records. The second row gives

the distributions of Smurf attack whereas the third row

gives the distribution of Neptune attack.

The implementation is done in two phases. In the first

phase the classification rules are generated using genetic

algorithm. Support confidence function as fitness function.

The GA parameters used were w1 = 0.2, w2 = 0.8, 200

generations, population of 2000 rules, mutation rate of

0.001. In the second (testing / detection) phase, for each

test data, an initial population is made using the data and

occurring mutation in different features. This population is
compared with each chromosomes prepared in training

phase. Portion of population, which are more loosely

related with all training data than others, are removed.

Crossover and mutation occurs in rest of the population

which becomes the population of new generation. The

process runs until the last generation finished. The group

of the chromosome which is closest relative of only

surviving chromosome of test data is returned as the

predicted type.
TABLE 2.Results

A. Execution Time

The time taken by a genetic algorithm to reach to a

required solution is an important aspect. This execution

time increases linearly as the population size increases for

the equal number of generations. Graph 4.1 shows the

population size and corresponding execution time taken by

the GA. The maximum number of generations is set to

200.

Graph 4.1 Effects of GA population size on Execution Time

B.Population Size

Graph 4.2 shows the percentage detection for different

number of generations of GA. As the number of

generations is increased, the detection rate is improved at

the cost of increased time required for the generation of

rules. The best results are obtained after 200 generations.

Graph 4.2 Effects of Population on Detection Accuracy

0

5

10

15

20

25

30

0 200 400 600 800

Ex
ec

u
ti

o
n

T
im

e
(i

n
 H

o
u

rs
)

Population Size

0

20

40

60

80

100

120

0 2000 4000 6000
Population Size

D
et

ec
ti

o
n

A
cc

u
ra

cy

Record

Type

Training Testing Match

%

Normal 73 64 87%

Smurf 799 790 98%

Neptune 96 96 100%

http://www.ijireeice.com/

ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue 7, July 2014

Copyright to IJIREEICE www.ijireeice.com 1736

IV CONCLUSION

IDS is implemented using GA in two steps. In the first

step, GA is used to generate classification rules where as

in the second step these rules are used for intrusion

detection. This reduces the search space and yields more

accurate results while using smaller population and lesser

number of generations compared to Gong et al.’s

approach. This has reduced the time required for the
generation of fittest rules. The given system is run for

different generations. As the number of generations is

increased, more accurate intrusion detection rates are

obtained.

ACKNOWLEDGMENT

I would like to thank Prof.C.M.Gaikwad for valuable

guidance at every step in making this paper. She motivated

me and boosted my confidence and I must admit that the

work would not have been accomplished with her

guidance and encouragement.

REFERENCES

[1] W. Li, “A Genetic Algorithm Approach to Network Intrusion

Detection”, SANS Institute, USA, 2004.

[2] Li, Wei. 2002. “The integration of security sensors into the

Intelligent Intrusion Detection System (IIDS) in a cluster

environment.” Master’s Project Report. Department of Computer

Science, Mississippi State University.

[3] MIT Lincoln Laboratory, DARPA datasets, MIT, USA, in

November r 2004).

http://www.ll.mit.edu/IST/ideval/data/data_index.html

[4] H. Pohlheim, “Genetic and Evolutionary Algorithms: Principles,

Methods and Algorithms”, http://www.geatbx.com/docu/index.html

(accessed in January 2005).

[5] M. Crosbie and E. Spafford, “Applying Genetic Programming to

Intrusion Detection”, Proceedings of the AAAI Fall Symposium, 1995

[6] W. Lu and I. Traore, “Detecting New Forms of Network Intrusion

Using Genetic Programming”, Computational Intelligence, vol. 20,

pp. 3, Blackwell Publishing, Malden, pp. 475-494, 2004.

[7] Srinivas Mukkamala, “Intrusion detection using neural networks

and support vector machine,” Proceedings of the 2002 IEEE

International Honolulu, HI, 2002.

[8] R. A. Kemmerer and G. Vigna, “Intrusion detection: a brief history

and overview,” Computer, vol. 35, no. 4, pp. 27–30, 2002.

[9] Kshirsagar, Vivek K., Sonali M. Tidke, and Swati Vishnu (2012)

Intrusion Detection System using Genetic Algorithm and Data

Mining: An Overview., International Journal of Computer Science

and Informatics ISSN (PRINT): pp. 2231-5292.

[10] Anup Goyal, Chetan Kumar (2008) GA-NIDS: A Genetic

Algorithm based Network Intrusion Detection System.

BIOGRAPHY

Lata Jadhav received the Bachelor in

Information Technology degree from

Dr.Babasaheb Ambedkar Marathwada

University, Aurangabad ,in Year 2008.She

is currently pursuing the ME Degree with

Comp Science and Engineering,

Govternment College of Engineering,
Aurangabad. Her research interest include Genetic

algorithm ,Network security.

http://www.ijireeice.com/

