
 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue 1, January 2014

Copyright to IJIREEICE www.ijireeice.com 687

An efficient low power L2 cache architecture

using pre-computation logic

GOPINATH.M
1
, PRAVEEN.L

2
, RAMALAKSHIMI.P

3

PG Scholar, Department of ECE, Ranganathan Engineering College,Tamil Nadu,India
1

PG Scholar, Department of ECE, Ranganathan Engineering College,Tamil Nadu,India
2

Assistant Professor, Department of ECE,Ranganathan Engineering College, Tamil Nadu,India
3

Abstract: Caches consume a significant amount of energy in modern microprocessors. To design an energy-efficient

microprocessor, it is important to optimize cache energy consumption. High-performance microprocessors employ

cache write-through policy for performance improvement and at the same time achieving good tolerance to soft errors

in on-chip caches. Write-through policy also consumes large power due to the increased access to caches in different

level during write operation. In this paper, we propose an efficient low power cache design referred to as way-tagged

cache using Pre-Computation Logic. The cache architecture is designed using a Pre-Computational technique in place

of the comparators. This helps to achieve low power consumption than existing technique.

Keywords: Cache, low power, Pre-computation logic, way-tagged cache, write-through policy.

I. INTRODUCTION

The cache is a smaller, faster memory which stores copies

of the data from frequently used main memory locations.

As long as most memory accesses are cached memory

locations, the average latency of memory accesses will be

closer to the cache latency than to the latency of main

memory. When the processor needs to read from or write

to a location in main memory, it first checks whether a

copy of that data is in the cache. If so, the processor

immediately reads from or writes to the cache, which is

much faster than reading from or writing to main memory.

The use of cache memory, however, has often aggravated

the bandwidth problem rather than reduce it. Optimizing

the design has four general aspects:

(1) Maximizing the hit ratio,

(2) Minimizing the access time to data in the cache,

(3) Minimizing the delay due to a miss, and

(4) Minimizing the overheads of updating main memory,

maintaining multi-cache consistency, etc.

Multi-Level on-chip cache systems have been widely

adopted in high- performance architectures. Two

techniques commonly available to keep data throughout

the memory levels, write-through and write –back polices.

In write-back policy initially, writing is done only to the

cache. The write to the backing store is postponed until the

cache blocks containing the data are about to be

modified/replaced by new content. While under the write-

through policy, Write is done synchronously both to the

cache and to the backing store all copies of a cache block

are updated immediately after the cache block is modified

at the current cache. As a result, the write-through policy

maintains identical data copies at all levels of the cache

hierarchy throughout most of their life time of execution.

This feature is important as CMOS technology is scaled

into the nano meter range, where soft errors have emerged

as a major reliability issue in on-chip cache systems. Due

to this feature, many high-performance microprocessor

designs have adopted the write-through policy while

enabling better tolerance to soft errors, the write-through

policy also incurs large energy overhead. This is because

under the write-through policy, caches at the lower level

experience more accesses during write operations.

Consider a two-level (i.e., Level-1 and Level-2) cache

system for example. If the L1 data cache implements the

write-back policy, a write hit in the L1 cache does not

need to access the L2 cache. In contrast, if the L1 cache is

write-through, then both L1 and L2 caches need to be

accessed for every write operation. Obviously, the write -

through policy incurs more write accesses in the L2 cache,

which in turn increases the energy consumption of the

cache system. Power dissipation is now considered as one

of the critical issues in cache design.

Studies have shown that on-chip caches can consume

about 50% of the total power in high-performance

microprocessors. In this project, we propose new cache

architecture, referred to as efficient low power L2 way-

tagged cache architecture using pre-computation logic, to

improve the energy efficiency of write-through cache

systems with minimal area overhead and no performance

degradation.

II. RELATED WORK

Many techniques have been developed to reduce cache

power dissipation. In this section, we briefly review some

existing work related to the proposed technique.

Koji Inoue, Tohru Ishihara, and Kazuaki Murakami,

proposed a Way-Predicting Set-Associative Cache for

High Performance and Low Energy Consumption. This

paper proposes a new approach using way prediction for

achieving high performance and low energy consumption

of set-associative caches. By accessing only a single cache

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue 1, January 2014

Copyright to IJIREEICE www.ijireeice.com 688

way predicted, instead of accessing all the ways in a set,

the energy consumption can be reduced. This paper shows

that the way-predicting set-associative cache improves the

ED (energy-delay) product by 60–70% compared to a

conventional set-associative cache.

The way-predicting cache speculatively chooses one way

before starting the normal cache-access process, and then

accesses the predicted way. If the prediction is correct, the

cache access has been completed successfully. Otherwise,

the cache then searches the other remaining ways. On a

prediction-hit, the way-predicting cache consumes only

energy for activating the predicted way. In addition, the

cache access can be completed in one cycle.

 On prediction-misses (or cache misses), however, the

cache-access time of the way-predicting cache increases

due to the successive process of two phases. Since all the

remaining ways are activated in the same manner as a

conventional set-associative cache, the way-predicting

cache could not reduce energy consumption in this

scenario.

Albert Ma, Michael Zhang, and Krste Asanovic, proposed

a Way Memoization to Reduce Fetch Energy in

Instruction Caches. Way memoization is an alternative to

way prediction. As in way prediction schemes, way

memoization stores way information (links) within the

instruction cache, but in addition maintains a valid bit per

link that when set guarantees that the way link is valid. In

contrast, way prediction schemes must always read one tag

to verify that the prediction is correct.

Way memoization stores tag lookup results (links) within

the instruction cache in a manner similar to some way

prediction schemes. However, way memoization also

associates a valid bit with each link. These valid bits

indicate, prior to instruction access, whether the link is

correct. This is in contrast to way prediction where the

access needs to be verified afterward. This is the crucial

difference between the two schemes, and allows way-

memoization to work better in CAM-tagged caches. If the

link is valid, we simply follow the link to fetch the next

instruction and no tag checks are performed. Otherwise,

we fall back on a regular tag search to find the location of

the next instruction and update the link for future use.

The main complexity in our technique is caused by the

need to invalidate all links to a line when that line is

evicted. The coherence of all the links is maintained

through an invalidation scheme.

Rui Min, Wenben Jone and Yiming Hu, proposed a

Phased Tag Cache: An efficient Low Power Cache

System. Phased tag cache proposed for reducing the

power consumption of set-associative caches. In the

phased tag cache, the tag is compared in two phases. A

small part of the tag is compared in the first phase to

determine the data way which a memory reference falls

into. The remaining bits of the tag are compared in the

second phase to verify if the result from the first phase is

valid, by doing so we can eliminate most of the

unnecessary activities on the entire tag. By comparing a

small part of the tag, it is possible that we find several hits

in phase 1. This introduces both time and energy overhead.

To alleviate the problem, we propose two circuit designs.

The Enforced design requires enforcing the unique

property on the least significant bits compared in the first

phase, which are called identity bits. The Non-enforced

design does not require that. A new cache replacement

algorithm associated to the enforced design in phase 2, the

enforced phased tag design can reduce the number of

sense amplifiers and comparators, compared with non-

enforced and regular tag designs. However, the structure

of non-enforce phased tag design is similar to that of a

conventional tag. We can easily implement a tag system

that can be accessed both as a regular tag and a non-

enforced phased tag. Simulation results based on

Spec2000 benchmark applications suggest that the phased

tag cache design has small impact on the cache

performance.

III. PRE- COMPUTATION LOGIC

In this section, we propose pre- computation logic that

exploits the way information in L2 cache and reduce

switching while comparison to improve energy efficiency.

In the proposed architecture the inputs to the block A have

been partitioned into two sets, corresponding to the

register R1 and R2. The output of the logic block feeds the

register R3.

Fig. 1. Conventional Way-Tagged Cache.

 A way-tagged cache consider a conventional set-

associative cache system when the L1 data cache

loads/writes data from/into the L2 cache; all ways in the

L2 cache are activated simultaneously for performance

consideration at the cost of energy overhead. The way-tag

arrays are very small and the involved energy overhead

can be easily compensated. For L1 read operations, neither

read hits nor misses need to access the way-tag arrays.

This is because read hits do not need to access the L2

cache; while for read misses, the corresponding way tag

information is not available in the way-tag arrays. As a

result, all ways in the L2 cache are activated

simultaneously under read misses.

We introduce several new components: way-tag arrays,

way-tag buffer, way decoder, and way register, all shown

in the dotted line. The way tags of each cache line in the

L2 cache are maintained in the way-tag arrays, located

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue 1, January 2014

Copyright to IJIREEICE www.ijireeice.com 689

with the L1 data cache. Note that write buffers are

commonly employed in write-through caches (and even in

many write-back caches) to improve the performance.

With a write buffer, the data to be written into the L1

cache is also sent to the write buffer. The operations stored

in the write buffer are then sent to the L2 cache in

sequence.

This avoids write stalls when the processor waits for write

operations to be completed in the L2 cache. We also need

to send the way tags stored in the way-tag arrays to the L2

cache along with the operations in the write buffer. Thus, a

small way-tag buffer is introduced to buffer the way tags

read from the way-tag arrays. A way decoder is employed

to decode way tags and generate the enable signals for the

L2 cache, which activate only the desired ways in the L2

cache. Each way in the L2 cache is encoded into a way

tag. A way register stores way tags and provides this

information to the way-tag arrays.

TABLE 1

Equivalent L2 Access Modes Under Different Operations in the L1

Cache

 Operation in the L1 cache

 Read hit Read miss Write hit Write miss

L2 No

access

Set-

associative

Direct-

mapping

Set-

associative

.

FIG. 2 Pre-Computation Logic Way Tag Array.

In general, both write and read accesses in the L1 cache

may need to access the L2 cache. Under the write-through

policy, all write operations of the L1 cache need to access

the L2 cache. In the case of a write hit in the L1 cache,

only one way in the L2 cache will be activated write

accesses account for the majority of L2 cache accesses in

most applications. In addition, write hits are dominant

among all write operations which is shown in Table 1

A. Pre-Computation Logic Comparator

 In the proposed architecture

pre- computation logic is implemented in the place of

comparators. In conventional way-tagged cache

architecture, when the CPU request for a read/write access

the virtual address is converted to physical address by the

TLB. The address from the TLB will be compare with the

TAG arrays once the comparison result is true then cache

hits the data will be accessed, if it is false then the

comparison will check all the TAGS which are stored in

TAG array. Each address bit in the tag is compared with

the address from the TLB. The proposed pre- computation

logic reduces this effect by loading the address from TLB

to register R1 and the address from tag array will be

loaded one by one in the another register R2 shown in fig.

3. In comparator instead of comparing all the bits together

at a time it will just take one bit from each register at a

time, if the result is true then the feedback is given to the

register R2 which sends the next bit for comparison this

continues up to all bits are compared. If the comparison is

false the feedback will send a false condition to the

register R2 which load the another address from the TAG

array for the comparison. This reduces the power

consumption due to switching also no impact on cache

performance.

Fig. 3. Pre- Computation Logic Comparator.

B. Way-Tag Arrays

In the way-tagged cache, each cache line in the L1 cache

keeps its L2 way tag information in the corresponding

entry of the way-tag arrays, as shown in Fig. 4, where only

one L1 data array and the associated way-tag array are

shown for simplicity. When a data is loaded from the L2

cache to the L1 cache, the way tag of the data is written

into the way-tag array. At a later time when updating this

data in the L1 data cache, the corresponding copy in the

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue 1, January 2014

Copyright to IJIREEICE www.ijireeice.com 690

L2 cache needs to be updated as well under the write-

through policy. The way tag stored in the way-tag array is

read out and forwarded to the way-tag buffer together with

the data from the L1 data cache. Note that the data arrays

in the L1 data cache and the way-tag arrays share the same

address as the mapping between the two is exclusive.

TABLE II

Operations of Way-Tag Arrays

WRITEH UPDATE OPERATION

1 1 Write way-tag arrays

1 0 Read way-tag arrays

0 0 No access

0 1 No access

Fig. 4 Way-Tag Arrays.

The read/write signal of way-tag arrays, WRITEH_W, is

generated from the write/read signal of the data arrays in

the L1 data cache as shown in Fig. 3.3. When the write

access to the L1 data cache is caused by a L1 cache miss,

UPDATE will be asserted and allow WRITEH_W to

enable the write operation to the way-tag arrays (

WRITEH = 1, UPDATE = 1, see fig. 3.4). If a STORE

instruction accesses the L1 data cache, UPDATE keeps

invalid and WRITE_W indicates a read operation to the

way-tag arrays (WRITEH =1, UPDATE =0). During the

read operations of the L1 cache, the way-tag arrays do not

need to be accessed and thus are deactivated to reduce

energy overhead. To achieve this, the word line selection

signals generated by the decoder are disabled by

WRITEH(WRITEH = 0, UPDATE = 0/1) through AND

gates. The above operations are summarized in TABLE II.

When a cache line is evicted from the L2 cache, the status

of the cache line changes to “invalid” to avoid future

fetching and thus prevent cache coherence issues. A read

or write operation to this cache line will lead to a miss,

which can be handled by the proposed way-tagged cache.

Since way-tag arrays will be accessed only when a data is

written into the L1 data cache (either when CPU updates a

data in the L1 data cache or when a data is loaded from the

L2 cache), they are not affected by cache misses.

C. Way-Tag Buffer

Way-tag buffer temporarily stores the way tags read from

the way-tag arrays. The implementation of the way-tag

buffer is shown in Fig. 5. It has the same number of

entries as the write buffer of the L2 cache and shares the

control signals with it. Each entry of the way-tag buffer

has (n+1) bits, where is the line size of way-tag arrays. An

additional status bit indicates whether the operation in the

current entry is a write miss on the L1 data cache. When a

write miss occurs, all the ways in the L2 cache need to be

activated as the way information is not available.

Otherwise, only the desired way is activated. The status bit

is updated with the read operations of way-tag arrays at

the same clock cycle.

Fig. 5 Way-Tag Buffer.

D. Way Decoder

The function of the way decoder is to decode way tags and

activate only the desired ways in the L2 cache. As the

binary code is employed, the line size of way-tag arrays is

n= log2 N bits, where N is the number of ways in the L2

cache. This minimizes the energy overhead from the

additional wires and the impact on chip area is negligible.

For a L2 write access caused by a write hit in the L1

cache, the way decoder works as a -to- decoder that selects

just one way-enable signal. The way decoder operates

simultaneously with the decoders of the tag and data

arrays in the L2 cache is shown in Fig.6

Fig. 6 Implementation of the Way Decoder.

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue 1, January 2014

Copyright to IJIREEICE www.ijireeice.com 691

IV. EVALUATION AND DISCUSSION

 In this section, we evaluate the proposed

technique by comparing energy savings with existing

cache design techniques. The Pre-computation logic

discussed before is designed using VHDL (VHSIC

Hardware Description Language). Then the coding is

checked and synthesized using the XILINX tool. The

simulation is done using MODELSIM tool. The way-

tagged cache architecture discussed in this project uses a

newly modified pre-computation logic in order to reduce

the power consumption. The simulated results using

MODELSIM software are given for the proposed pre-

computation logic. Then the synthesis report which shows

the total power consumption is presented next. Finally a

comparison is made with conventional way tagged cache

architecture.

Fig. 7. Output Waveform of Way Tagged Cache with Pre- Computation Logic

Using Xilinx xpower analyzer the total power of pre-computation logic is calculated and shown in fig. 8

Fig. 8. Power Analysis of Pre-Computation Logic

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue 1, January 2014

Copyright to IJIREEICE www.ijireeice.com 692

V. CONCLUSION

From the power analysis it shows that the total power

consumption by the proposed pre-computation logic is

reduced. Total power in way-tagged architecture using

Pre-computation logic is 0.408(w) were as in conventional

architecture 0.802(w), so the proposed system has reduced

50% power consumption than conventional technique. The

proposed technique achieves 50% energy saving with area

over head and no impact on cache performance. Various

cache techniques can be implementing to reduce the area

over head effect.

REFERENCES

[1] K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-

associative cache for high performance and low energy consumption,” in
Proc.Int. Symp. Low Power Electron. Design, 1999, pp. 273–275.

[2] A.Ma, M. Zhang, and K.Asanovi, “Way memoization to

reduce fetch energy in instruction caches,” in Proc. ISCA Workshop
Complexity effective Design, 2001, pp. 1–9.

[3] R.Min,W. Jone, and Y. Hu, “Phased tag cache: An efficient

low power cache system,” in Proc. Int. Symp. Circuits Syst., 2004, pp. 23–26.
[4] C. Su and A. Despain, “Cache design tradeoffs for power and

performance optimization: A case study,” in Proc. Int. Symp. Low Power

Electron. Design, 1997, pp. 63–68.
[5] T. Ishihara and F. Fallah, “A way memoization technique for

reducing power consumption of caches in application specific integrated

processors,” in Proc. Design Autom. Test Euro. Conf., 2005, pp. 358–363.

[6] M. K. Qureshi, D. Thompson, and Y. N. Patt, “The V-way

cache: Demand based associativity via global replacement,” in Proc. Int.

Symp. Comput. Arch., 2005, pp. 544–555.
[7] C. Zhang, F. Vahid, and W. Najjar, “A highly-configurable

cache architecture for embedded systems,” in Proc. Int. Symp. Comput.

Arch., 2003, pp. 136–146.
[8] T. N. Vijaykumar, “Reactive-associative caches,” in Proc. Int.

Conf. Parallel Arch. Compiler Tech., 2011, p. 4961.

[9] J. Maiz, S. hareland, K. Zhang, and P.Armstrong,
“Characterization of multi-bit soft error events in advanced SRAMs,” in

Proc. Int. Electron Devices Meeting, 2003, pp. 21.4.1–21.4.4.

[10] A. Malik, B. Moyer, and D. Cermak, “A low power unified cache
architecture providing power and performance flexibility,” in Proc. Int.

Symp. Low Power Electron. Design, 2000, pp. 241–243.

[11] S. Segars, “Low power design techniques for
microprocessors,” in Proc. Int. Solid-State Circuits Conf. Tutorial, 2001,

pp. 268–273.

[12] N. Quach, “High availability and reliability in the Itanium

processor,” IEEE Micro, pp. 61–69, 2000.

[13] X. Vera, J. Abella, A. Gonzalez, and R. Ronen, “Reducing

soft error vulnerability of data caches,” presented at the Workshop
System Effects Logic Soft Errors, Austin, TX, 2007.

[14] L. Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir, and M.

J. Irwin, “Soft error and energy consumption interactions: A data cache
perspective,” in Proc. Int. Symp. Low Power Electron. Design, 2004, pp.

132–137.

http://www.ijireeice.com/

