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Abstract: Caches consume a significant amount of energy in modern microprocessors. To design an energy-efficient 

microprocessor, it is important to optimize cache energy consumption.  High-performance microprocessors employ 

cache write-through policy for performance improvement and at the same time achieving good tolerance to soft errors 

in on-chip caches. Write-through policy also consumes large power due to the increased access to caches in different 

level during write operation.  In this paper, we propose an efficient low power cache design referred to as way-tagged 

cache using Pre-Computation Logic. The cache architecture is designed using a Pre-Computational technique in place 

of the comparators. This helps to achieve low power consumption than existing technique. 
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I. INTRODUCTION 

The cache is a smaller, faster memory which stores copies 

of the data from frequently used main memory locations. 

As long as most memory accesses are cached memory 

locations, the average latency of memory accesses will be 

closer to the cache latency than to the latency of main 

memory. When the processor needs to read from or write 

to a location in main memory, it first checks whether a 

copy of that data is in the cache. If so, the processor 

immediately reads from or writes to the cache, which is 

much faster than reading from or writing to main memory. 

The use of cache memory, however, has often aggravated 

the bandwidth problem rather than reduce it. Optimizing 

the design has four general aspects: 

(1) Maximizing the hit ratio, 

(2) Minimizing the access time to data in the cache, 

(3) Minimizing the delay due to a miss, and 

(4) Minimizing the overheads of updating main memory, 

maintaining multi-cache consistency, etc. 

 

Multi-Level on-chip cache systems have been widely 

adopted in high- performance architectures. Two 

techniques commonly available to keep data throughout 

the memory levels, write-through and write –back polices.  

In write-back policy initially, writing is done only to the 

cache. The write to the backing store is postponed until the 

cache blocks containing the data are about to be 

modified/replaced by new content. While under the write-

through policy, Write is done synchronously both to the 

cache and to the backing store all copies of a cache block 

are updated immediately after the cache block is modified 

at the current cache. As a result, the write-through policy 

maintains identical data copies at all levels of the cache 

hierarchy throughout most of their life time of execution.  

This feature is important as CMOS technology is scaled 

into the nano meter range, where soft errors have emerged  

 

 

 

as a major reliability issue in on-chip cache systems. Due 

to this feature, many high-performance microprocessor 

designs have adopted the write-through policy while 

enabling better tolerance to soft errors, the write-through 

policy also incurs large energy overhead. This is because 

under the write-through policy, caches at the lower level 

experience more accesses during write operations. 

Consider a two-level (i.e., Level-1 and Level-2) cache 

system for example. If the L1 data cache implements the 

write-back policy, a write hit in the L1 cache does not 

need to access the L2 cache. In contrast, if the L1 cache is 

write-through, then both L1 and L2 caches need to be 

accessed for every write operation. Obviously, the write -

through policy incurs more write accesses in the L2 cache, 

which in turn increases the energy consumption of the 

cache system. Power dissipation is now considered as one 

of the critical issues in cache design.  

Studies have shown that on-chip caches can consume 

about 50% of the total power in high-performance 

microprocessors. In this project, we propose new cache 

architecture, referred to as efficient low power L2 way-

tagged cache architecture using pre-computation logic, to 

improve the energy efficiency of write-through cache 

systems with minimal area overhead and no performance 

degradation. 

II. RELATED WORK 

Many techniques have been developed to reduce cache 

power dissipation. In this section, we briefly review some 

existing work related to the proposed technique. 

Koji Inoue, Tohru Ishihara, and Kazuaki Murakami, 

proposed a Way-Predicting Set-Associative Cache for 

High Performance and Low Energy Consumption. This 

paper proposes a new approach using way prediction for 

achieving high performance and low energy consumption 

of set-associative caches. By accessing only a single cache 

http://www.ijireeice.com/


 ISSN (Online) 2321 – 2004 
ISSN (Print) 2321 – 5526 

 
                     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING 
                    Vol. 2, Issue 1, January 2014 

 

Copyright to IJIREEICE                                                                                       www.ijireeice.com                                                                                                          688 

way predicted, instead of accessing all the ways in a set, 

the energy consumption can be reduced. This paper shows 

that the way-predicting set-associative cache improves the 

ED (energy-delay) product by 60–70% compared to a 

conventional set-associative cache.  

The way-predicting cache speculatively chooses one way 

before starting the normal cache-access process, and then 

accesses the predicted way. If the prediction is correct, the 

cache access has been completed successfully. Otherwise, 

the cache then searches the other remaining ways. On a 

prediction-hit, the way-predicting cache consumes only 

energy for activating the predicted way. In addition, the 

cache access can be completed in one cycle. 

 On prediction-misses (or cache misses), however, the 

cache-access time of the way-predicting cache increases 

due to the successive process of two phases. Since all the 

remaining ways are activated in the same manner as a 

conventional set-associative cache, the way-predicting 

cache could not reduce energy consumption in this 

scenario. 

Albert Ma, Michael Zhang, and Krste Asanovic, proposed 

a Way Memoization to Reduce Fetch Energy in 

Instruction Caches. Way memoization is an alternative to 

way prediction. As in way prediction schemes, way 

memoization stores way information (links) within the 

instruction cache, but in addition maintains a valid bit per 

link that when set guarantees that the way link is valid. In 

contrast, way prediction schemes must always read one tag 

to verify that the prediction is correct. 

Way memoization stores tag lookup results (links) within 

the instruction cache in a manner similar to some way 

prediction schemes. However, way memoization also 

associates a valid bit with each link. These valid bits 

indicate, prior to instruction access, whether the link is 

correct. This is in contrast to way prediction where the 

access needs to be verified afterward. This is the crucial 

difference between the two schemes, and allows way-

memoization to work better in CAM-tagged caches. If the 

link is valid, we simply follow the link to fetch the next 

instruction and no tag checks are performed. Otherwise, 

we fall back on a regular tag search to find the location of 

the next instruction and update the link for future use. 

The main complexity in our technique is caused by the 

need to invalidate all links to a line when that line is 

evicted. The coherence of all the links is maintained 

through an invalidation scheme. 

Rui Min, Wenben Jone and Yiming Hu, proposed a 

Phased Tag Cache: An efficient Low Power Cache 

System.  Phased tag cache proposed for reducing the 

power consumption of set-associative caches. In the 

phased tag cache, the tag is compared in two phases. A 

small part of the tag is compared in the first phase to 

determine the data way which a memory reference falls 

into. The remaining bits of the tag are compared in the 

second phase to verify if the result from the first phase is 

valid, by doing so we can eliminate most of the 

unnecessary activities on the entire tag. By comparing a 

small part of the tag, it is possible that we find several hits 

in phase 1. This introduces both time and energy overhead. 

To alleviate the problem, we propose two circuit designs. 

The Enforced design requires enforcing the unique 

property on the least significant bits compared in the first 

phase, which are called identity bits. The Non-enforced 

design does not require that. A new cache replacement 

algorithm associated to the enforced design in phase 2, the 

enforced phased tag design can reduce the number of 

sense amplifiers and comparators, compared with non-

enforced and regular tag designs. However, the structure 

of non-enforce phased tag design is similar to that of a 

conventional tag. We can easily implement a tag system 

that can be accessed both as a regular tag and a non-

enforced phased tag. Simulation results based on 

Spec2000 benchmark applications suggest that the phased 

tag cache design has small impact on the cache 

performance. 

III. PRE- COMPUTATION LOGIC 

In this section, we propose pre- computation logic that 

exploits the way information in L2 cache and reduce 

switching while comparison to improve energy efficiency. 

In the proposed architecture the inputs to the block A have 

been partitioned into two sets, corresponding to the 

register R1 and R2. The output of the logic block feeds the 

register R3. 

 
  

Fig. 1. Conventional Way-Tagged Cache. 

 

 A way-tagged cache consider a conventional set-

associative cache system when the L1 data cache 

loads/writes data from/into the L2 cache; all ways in the 

L2 cache are activated simultaneously for performance 

consideration at the cost of energy overhead. The way-tag 

arrays are very small and the involved energy overhead 

can be easily compensated. For L1 read operations, neither 

read hits nor misses need to access the way-tag arrays. 

This is because read hits do not need to access the L2 

cache; while for read misses, the corresponding way tag 

information is not available in the way-tag arrays. As a 

result, all ways in the L2 cache are activated 

simultaneously under read misses.  

We introduce several new components: way-tag arrays, 

way-tag buffer, way decoder, and way register, all shown 

in the dotted line. The way tags of each cache line in the 

L2 cache are maintained in the way-tag arrays, located 
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with the L1 data cache. Note that write buffers are 

commonly employed in write-through caches (and even in 

many write-back caches) to improve the performance. 

With a write buffer, the data to be written into the L1 

cache is also sent to the write buffer. The operations stored 

in the write buffer are then sent to the L2 cache in 

sequence. 

This avoids write stalls when the processor waits for write 

operations to be completed in the L2 cache. We also need 

to send the way tags stored in the way-tag arrays to the L2 

cache along with the operations in the write buffer. Thus, a 

small way-tag buffer is introduced to buffer the way tags 

read from the way-tag arrays. A way decoder is employed 

to decode way tags and generate the enable signals for the 

L2 cache, which activate only the desired ways in the L2 

cache. Each way in the L2 cache is encoded into a way 

tag. A way register stores way tags and provides this 

information to the way-tag arrays. 

 
TABLE 1 

Equivalent L2 Access Modes Under Different Operations in the L1 

Cache 
 

 Operation in the L1 cache 

 Read hit Read miss Write hit Write miss 

L2 No 

access 

Set-

associative 

Direct-

mapping 

Set-

associative 

 

 

.

 
 

FIG. 2 Pre-Computation Logic Way Tag Array. 

 

In general, both write and read accesses in the L1 cache 

may need to access the L2 cache. Under the write-through 

policy, all write operations of the L1 cache need to access 

the L2 cache. In the case of a write hit in the L1 cache, 

only one way in the L2 cache will be activated write 

accesses account for the majority of L2 cache accesses in 

most applications. In addition, write hits are dominant 

among all write operations which is shown in Table 1 

A. Pre-Computation Logic Comparator 

 

   In the proposed architecture 

pre- computation logic is implemented in the place of 

comparators. In conventional way-tagged cache 

architecture, when the CPU request for a read/write access 

the virtual address is converted to physical address by the 

TLB. The address from the TLB will be compare with the 

TAG arrays once the comparison result is true then cache 

hits the data will be accessed, if it is false then the 

comparison will  check all the TAGS which are stored in 

TAG array. Each address bit in the tag is compared with 

the address from the TLB. The proposed pre- computation 

logic reduces this effect by loading the address from TLB 

to register R1 and the address from tag array will be 

loaded one by one in the another register R2 shown in fig. 

3. In comparator instead of comparing all the bits together 

at a time it will just take one bit from each register at a 

time, if the result is true then the feedback is given to the  

register R2 which sends the next bit for comparison this 

continues up to all bits are compared. If the comparison is 

false the feedback will send a false condition to the 

register R2 which load the another address from the TAG 

array for the comparison. This reduces the power 

consumption due to switching also no impact on cache 

performance. 

 
 

Fig. 3. Pre- Computation Logic Comparator. 
 

B. Way-Tag Arrays 

In the way-tagged cache, each cache line in the L1 cache 

keeps its L2 way tag information in the corresponding 

entry of the way-tag arrays, as shown in Fig. 4, where only 

one L1 data array and the associated way-tag array are 

shown for simplicity. When a data is loaded from the L2 

cache to the L1 cache, the way tag of the data is written 

into the way-tag array. At a later time when updating this 

data in the L1 data cache, the corresponding copy in the 
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L2 cache needs to be updated as well under the write-

through policy. The way tag stored in the way-tag array is 

read out and forwarded to the way-tag buffer together with 

the data from the L1 data cache. Note that the data arrays 

in the L1 data cache and the way-tag arrays share the same 

address as the mapping between the two is exclusive.  
 

TABLE II 

Operations of Way-Tag Arrays 
 

WRITEH UPDATE OPERATION 

1 1 Write way-tag arrays 

1 0 Read way-tag arrays 

0 0 No access 

0 1 No access 

 

 
Fig. 4 Way-Tag Arrays. 

 

The read/write signal of way-tag arrays, WRITEH_W, is 

generated from the write/read signal of the data arrays in 

the L1 data cache as shown in Fig. 3.3. When the write 

access to the L1 data cache is caused by a L1 cache miss, 

UPDATE will be asserted and allow WRITEH_W to 

enable the write operation to the way-tag arrays ( 

WRITEH = 1, UPDATE = 1, see fig. 3.4). If a STORE 

instruction accesses the L1 data cache, UPDATE keeps 

invalid and WRITE_W indicates a read operation to the 

way-tag arrays (WRITEH =1, UPDATE =0). During the 

read operations of the L1 cache, the way-tag arrays do not 

need to be accessed and thus are deactivated to reduce 

energy overhead. To achieve this, the word line selection 

signals generated by the decoder are disabled by 

WRITEH(WRITEH = 0, UPDATE = 0/1) through AND 

gates. The above operations are summarized in TABLE II. 

When a cache line is evicted from the L2 cache, the status 

of the cache line   changes to “invalid” to avoid future 

fetching and thus prevent cache coherence issues. A read 

or write operation to this cache line will lead to a miss, 

which can be handled by the proposed way-tagged cache. 

Since way-tag arrays will be accessed only when a data is 

written into the L1 data cache (either when CPU updates a 

data in the L1 data cache or when a data is loaded from the 

L2 cache), they are not affected by cache misses. 
 

C. Way-Tag Buffer 

Way-tag buffer temporarily stores the way tags read from 

the way-tag arrays. The implementation of the way-tag 

buffer is shown in Fig. 5. It has the same number of   

entries as the write buffer of the L2 cache and shares the 

control signals with it. Each entry of the way-tag buffer 

has (n+1) bits, where is the line size of way-tag arrays. An 

additional status bit indicates whether the operation in the 

current entry is a write miss on the L1 data cache. When a 

write miss occurs, all the ways in the L2 cache need to be 

activated as the way information is not available. 

Otherwise, only the desired way is activated. The status bit 

is updated with the read operations of way-tag arrays at 

the same clock cycle. 
 

 
 

Fig. 5 Way-Tag Buffer. 

 

D. Way Decoder 

The function of the way decoder is to decode way tags and 

activate only the desired ways in the L2 cache. As the 

binary code is employed, the line size of way-tag arrays is 

n= log2 N bits, where N is the number of ways in the L2 

cache. This minimizes the energy overhead from the 

additional wires and the impact on chip area is negligible. 

For a L2 write access caused by a write hit in the L1 

cache, the way decoder works as a -to- decoder that selects 

just one way-enable signal. The way decoder operates 

simultaneously with the decoders of the tag and data 

arrays in the L2 cache is shown in Fig.6 

 
 

 
 

Fig. 6 Implementation of the Way Decoder. 
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IV. EVALUATION AND DISCUSSION 

    In this section, we evaluate the proposed 

technique by comparing energy savings with existing 

cache design techniques. The Pre-computation logic 

discussed before is designed using VHDL (VHSIC 

Hardware Description Language). Then the coding is 

checked and synthesized using the XILINX tool. The 

simulation is done using MODELSIM tool. The way-

tagged cache architecture discussed in this project uses a 

newly modified pre-computation logic in order to reduce 

the power consumption. The simulated results using 

MODELSIM software are given for the proposed pre-

computation logic. Then the synthesis report which shows 

the total power consumption is presented next. Finally a 

comparison is made with conventional way tagged cache 

architecture. 

 

 

Fig. 7. Output Waveform of Way Tagged Cache with Pre- Computation Logic 

 

Using Xilinx xpower analyzer the total power of pre-computation logic is calculated and shown in fig. 8 

 

 
Fig. 8. Power Analysis of Pre-Computation Logic
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V. CONCLUSION 

From the power analysis it shows that the total power 

consumption by the proposed pre-computation logic is 

reduced. Total power in way-tagged architecture using 

Pre-computation logic is 0.408(w) were as in conventional 

architecture 0.802(w), so the proposed system has reduced 

50% power consumption than conventional technique. The 

proposed technique achieves 50% energy saving with area 

over head and no impact on cache performance. Various 

cache techniques can be implementing to reduce the area 

over head effect. 
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