

Performance Evaluation of Table Driven Multipath Routing Protocols in MANET under varying Nodes, Traffic load & Pause time.

Rohit Jain¹, Ramprasad Kumawat², Sandeep Mandliya³, Mukesh Patidar⁴

Lecturer¹, Lecturer², PG Scholar³, PG Scholar⁴, Department of ECE, MIT, Mandsaur, India

Abstract: Routing in ad hoc networks is somewhat more complex than routing in regular wired networks. Unreliable links and (possibly) rapid changes in topology calls for customized routing protocols. This essay aims to discuss two such protocols, namely MPOLSR and MDART The common belief is that the same is true for ad hoc networks, i.e., multi-path routing balances the load significantly better than single-path routing. Our Protocol, called MPOLSR & MDART is a multipath routing protocol for MANET. In addition route recovery & loop detection are implemented in MPOLSR in order to improve quality of service regarding OLSR.MP-OLSR is suitable for mobile, large & dense network with large traffic & could satisfy critical multimedia applications with high on time constraints. While MDART is an efficient protocol which gives improved performance in large networks. MDART is an enhancement of shortest path routing protocol known as Dynamic Address Routing (DART).MDART discovers and stores multiple paths to the destination in the routing table. In this paper, we have compare and analysis the performance of Table driven multipath routing protocols in MANET under different scenarios & metrics using NS-2.

Keywords: MANET, MRP, MPOLSR, MDART, NS-2 etc.

I. INTRODUCTION

deployable wireless Mobile Ad hoc Networks (MANETs) come along with the advances in wireless portable technologies.Compared with the conventional cellular wireless mobile networks that rely on extensive infrastructure to support mobility, the MANETs do not need base stations and wired infrastructure. This future makes it useful in battlefields, emergency searches and rescue operations where fixed base stations are undesirable or unavailable[3]. Ad hoc networks are emerging as the next generation of networks and defined as a collection of mobile nodes forming a temporary (spontaneous) network without the aid of any centralized administration or standard support services. In Latin, ad hoc literally means "for this," further meaning "for this purpose only" and thus usually temporary. An Ad hoc routing protocol is a convention or standard that controls how nodes come to agree which way to route packets between computing devices in a mobile ad-hoc network (MANET). In ad hoc networks, nodes do not have a priori knowledge of topology of network around them, they have to discover it. As time goes on, each node knows about all other nodes and one or more ways how to reach them. They can be classified as proactive (Table Driven) and reactive(on demand) routing depending on several factors. Proactive Routing and Reactive Routing are two main kinds of routing protocol for Ad hoc networks .For Proactive Routing, also called table driven routing, each node maintains a routing table containing routes to all nodes in the network. Nodes must periodically exchange messages with routing information to keep routing tables up-todate. The routing table is calculated before needed. So it

Now a days, great demands for self-organizing, fast has minimal latency but also has high control overhead. deployable wireless Mobile Ad hoc Networks (MANETs) The OLSR protocol mentioned above is a typical proactive

routing protocol. For Reactive Routing, also called ondemand routing, a node only tries to find a route when necessary. However, because sometimes the route could not be get immediately, the network using reactive routing usually has longer delay [6].Our approach is to get the topology information proactively and compute the routes on-demand.

There exist unipath and multipath routing protocols. Unipath routing protocol: one route is used to deliver data from source node to destination node. Multipath routing protocol: more than one route is used to deliver the data.

II. MULTIPATH ROUTING IN ADHOC NETWORKS

Mobile ad hoc networks (MANETs) are characterized by a dynamic topology, limited channel bandwidth and limited power at the nodes. Because of these characteristics, paths connecting source nodes with

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING Vol. 2, Issue 2, February 2014

time, making communication over ad hoc networks difficult. On the other hand, since all nodes in an ad hoc network can be connected dynamically in an arbitrary manner, it is usually possible to establish more than one path between a source and a destination. When this property of ad hoc networks is used in the routing process, we speak of multipath routing. In most cases (e.g.), the ability of creating multiple routes from a source to a destination is used to provide a backup route. When the primary route fails to deliver the packets in some way, the backup is used. This provides a better fault tolerance in the sense of faster and efficient recovery from route failures. Multiple paths can also provide load balancing and route failure protection by distributing traffic among a set of disjoint paths. Paths can be disjoint in two ways: (a) link-disjoint and (b) node-disjoint. Node-disjoint paths do not have any nodes in common, except the source and destination, hence the do not have any links in common. Link-disjoint paths, in contrast, do not have any links in common. They may, however, have one or more common nodes [5]

Fig 2.Two link-disjoint paths from source S to destination D. Note that they are not node-disjoint, since they share

Fig 3.The two node-disjoint paths, when they are in each other's radio coverage.

In order to use multiple paths simultaneously they need to be as independent as possible. So not only do they need to be disjoint, also route coupling must be taken into account, because routes can interfere with each other. Route coupling takes place when a path crosses the radio coverage area of another path. There is a protocol that uses this property of radio broad cast to create backup-routes, but in the case of multiple-path data transport route coupling is unwanted. Routes may be link- or even nodedisjoint but still interfere with each other due to route coupling. Consider the node-disjoint routes of figure lagain. In the situation of figure 3, when node a for

destinations may be very unstable and go down at any time, making communication over ad hoc networks difficult. On the other hand, since all nodes in an ad hoc network can be connected dynamically in an arbitrary manner, it is usually possible to establish more than one path between a source and a destination. When this property of ad hoc networks is used in the routing process,

II. MDART

M-DART shares several characteristics with DART. It is based on the distance vector concept and it uses the hop by hop routing approach. Moreover, M-DART also resorts to the dynamic addressing paradigm by using transient network addresses. The main difference between DART and M-DART lies in the number of routes stored in the routing table: the former stores no more than 1 entries, one for each sibling, while the latter stores all the available routes toward each sibling. The core of M-DART protocol lies in ensuring that such an increase in the routing state information stored by each node does not introduce any further communication or coordination overhead by relying on the routing information already available in the DART protocol.M-DART extends the DART protocol to discover multiple routes between the source and the destination. In such a way, M-DART is able to improve the tolerance of a tree-based address space against mobility as well as channel impairments. Moreover, the multi-path feature also improves the performances in case of static topologies thanks to the route diversity. M-DART has two novel aspects compared to other multi-path routing protocols [6-7]. First, the redundant routes discovered by M-DART are guaranteed to be communication-free and coordination-free, i.e., their discovering and announcing though the network does not require any additional communication or coordination overhead. Second, M-DART discovers all the available redundant paths between source and destination, not just a limited number. In particular, it does not employ any special control Packet or extra field in the routing update entry and, moreover, the number of entries in the routing update packet is the same as DART

IV. MPOLSR

Multipath routing protocol called MP-OLSR based on OLSR to provide fault-tolerance, higher aggregate bandwidth and load balancing. It exchanges control messages periodically as OLSR to get the topology information of the whole networks [7].Based on this topology information, our Multipath Dijkstra algorithm is used to obtain the multiple paths for the routing. With the algorithm, we can get node-disjoint routes or path-disjoint routes as necessary by adjusting distinct cost functions. In the network, the packets are forwarded from the source to the destination by employing a semi-source routing mechanism (source routing with route recovery). In addition, to meet the need for the reliable transmission, multiple description coding strategy is used in the data transmission. This part benefits from MPRs like OLSR. The route computation uses the Multipath Dijkstra

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING Vol. 2, Issue 2, February 2014

Algorithm to calculate the multipath based on the information obtained from the topology sensing. The source route (all the hops from the source to the destination) is saved in the header of the data packets. The topology sensing and route computation make it possible to find multiple paths from source to destination. In the specification of the algorithm, the paths will be available and loop-free. However, in practice, the situation will be much more complicated due to the change of the topology and the instability of the wireless medium. So route recovery and loop detection are also proposed as auxiliary functionalities to improve the performance of the protocol[9]. The route recovery can effectively reduce the packet loss, and the loop detection can be used to avoid potential loop sin the network as depicted in we discuss both the core functionalities and auxiliarv functionalities[6].

V. METHODOLOGY

A .Simulation Environment

Simulation environment is as follows:

Parameter Values

Traffic type	CBR
Simulation time	600 seconds
Nodes	25,50,75,100
Traffic load(pkts/s)	2,4,6,8,10
Pause time(s)	0,100,200,300,400,500,600
Area of the network	1000*1000

B. NS-2 (Network Simulator-2)

The NS-2 [3] is a discrete event driven simulation and in this the physical activities are translated to events. Events in this are queued and processed in the order of their scheduled Occurrences. The functions of a Network Simulator [9] are to create the event scheduler, to create a network, for computing routes, to create connections, to create traffic. It is also useful for inserting errors and tracing can be done with it. Tracing packets on all links by the function trace-all and tracing packets on all links in nam +format using the function nam trace-all.

C. Performance Metrics

We report four performance metrics for the protocols: Success Delivery Rate: SDR is calculated by dividing the number of packets received by the destination through the number of packets originated by the application layer of the source (i.e. CBR source).

Throughput: Throughput is total packets successfully delivered to individual destination over total time divided by total time

Normalized Routing load: The routing overhead describes how many routing packets for route discovery and route maintenance need to be sent in order to propagate the CBR packets. It is an important measure for the scalability of a protocol.

Packet Loss: Packet loss occurs when one or more packets of data traveling across a network fail to reach their destination.

VI. SIMULATION RESULTS AND ANALYSIS:

We ran the simulation environments for 600 sec for three scenarios with nodes varying from 25 to 100, traffic load 2 to 10(pkts/s), Pause time varying in between 0 to 600 (s). Success delivery rates, Throughput, Normalized routing load & Packet loss are calculated for MPOLSR and MDART. The results are analyzed below with their corresponding graphs.

SUCCESS DELIVERY RATE:

(A).Comparison of MPOLSR & MDART on the basis of SDR with varying nodes, fixed max. connection-10, traffic load-2(pkts/sec), max. Speed-20(m/s), Pause time-0(s).

(B).Comparison of MPOLSR & MDART on the basis of SDR with varying traffic load, fixed nodes-50, maximum connection-10, maximum speed-20(m/s) & Pause time-0(s).

(C). Comparison of MPOLSR & MDART on the basis of SDR with varying pause time, fixed nodes-50, max.connection-10, Traffic load-2(pkts/s) & max. speed-20(m/s).

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING Vol. 2, Issue 2, February 2014

Analysis of the Result: We note that in this simulation as in SDR, MPOLSR performs well by varying nodes, traffic load (pkts/s) & pause time(s) as compare to MDART.We also noticed that as in all cases the value of MPOLSR protocols is linearly increasing or decreasing by increasing the value of parameters used in the scenarios. But in case of MDART protocols its value is exponentially or linearly decreasing.

THROUGHPUT:

(A).Comparison of MPOLSR & MDART on the basis of Throughput with varying nodes, fixed connection-10, traffic load-2(pkts/s),maximum speed-20(m/s) & Pause time-0(s).

(B). Comparison of MPOLSR & MDART on the basis of Throughput with varying traffic load, fixed nodes-50, maximum connection-10, maximum speed-20(m/s) & Pause time-0(s).

(C). Comparison of MPOLSR & MDART on the basis of Throughput with varying pause time, fixed nodes-50, traffic load-2(pkts/s), maximum connection-10 & max. Speed-20(m/s).

Analysis of the Result: We note that in this simulation as in Throughput, MPOLSR performs well in all cases by varying nodes, traffic load(pkts/s) & pause time(s) as compare to MDART.We also noticed that in both the protocols as in case of vary nodes its value is linearly decreasing by increasing the value of parameters used in

Analysis of the Result: We note that in this simulation as in scenarios. But in case of varying pause time & traffic load SDR, MPOLSR performs well by varying nodes, traffic its value is exponentially decreasing by increasing the load (pkts/s) & pause time(s) as compare to MDART.We value of parameters used in scenarios.

NORMALIZED ROUTING LOAD:

(A). Comparison of MPOLSR & MDART on the basis of NRL with varying nodes, fixed traffic load-2(pkts/s),maximum connection-10, maximum speed-20(m/s) & Pause time-0(s).

(B). Comparison of MPOLSR & MDART on the basis of NRL with varying traffic load, fixed nodes-50, maximum connection-10, maximum speed-20(m/s) & Pause time-0(s).

(C). Comparison of MPOLSR & MDART on the basis of NRL with varying speed, fixed nodes-50, traffic load-2(pkts/s), maximum connection-10 & pause time-0s.

Analysis of the Result: We note that in this simulation as in NRL, MDART performs well in all cases by varying nodes, pause time & traffic load as compare to MPOLSR.We also noticed that in both the protocols as in case of varying nodes its value is linearly increasing by increasing the value of parameters used in scenarios. But in case of varying pause time & traffic load MDART protocol value is exponentially increasing & decreasing by increasing the value of parameters used in scenarios. MPOLSR performance as in case of varying load is linearly decreasing from value 2 to 4 then after it value

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING Vol. 2. Issue 2. February 2014

follows the straight path. Performance of MDART as in case of varying pause time is exponentially decreasing by increasing the value of parameters used in scenarios.

PACKET LOSS:

(A) Comparison of MPOLSR & MDART on the basis of Packet loss with varying nodes, fixed connection-10, traffic load-2(pkts/s), maximum speed-20(m/s) & Pause [1] M.K. Marina, S.R. Das, On-demand multi path time-0(s).

(B). Comparison of MPOLSR & MDART on the basis of Packet loss with varying traffic load, fixed nodes-50, connection-10, maximum speed-20(m/s) & Pause time-0(s).

(C). Comparison of MPOLSR & MDART on the basis of Packet loss with varying speed, fixed nodes-50, traffic load-2(pkts/s), maximum connection-10 & pause time-0s. Analysis of the Result: We note that in this simulation as in Packet loss, MDART performance is more in all cases by varying nodes, pause time & Traffic load as compare to [15] J. Yi, E. Cizeron, S. Hamma, B. Parrein, Simulation performance MPOLSR.We also noticed that in both the protocols its value is linearly & exponentially increasing & decreasing by increasing the value of parameters used in the scenarios.

CONCLUSION

This paper evaluated the performance of MPOLSR and MDART using NS-2.Comparison was based on the Success delivery rate, Throughput, Normalized Routing load & Packet loss. We concluded that the performance of MPOLSR is better as compared to MDART in terms of SDR, Throughput by varying all the scenarios which is used in Simulation.In NRL & Packet Loss Metrics, MDART performance is better as compared to MPOLSR by varying all the scenarios. We also seen that as in both the protocols its value is exponentially & linearly increasing & decreasing by increasing the value of parameters used in our simulation. As it is obvious that in one protocol if success to delivery ratio is high than loss of packet is less & Success to delivery ratio is low than packet loss is more.

REFERENCES

- distance vector routing in ad hoc networks, in Proceedings of the Ninth International Conference on Network Protocols, IEEE Computer Society, Washington, DC, USA, 2001, pp. 14-23.
- S.Lee, M. Gerla, Split multipath routing with maximally disjoint [2] paths in ad hoc networks, Helsinki, Finland, 2001, pp. 3201-3205.
- M. Caleffi and L. Paura, "M-DART: Multi-path Dynamic Address [3] Routing", Wirel. Commun. Mob. Comput. pp: 1-20, 2010
- H. Badis, K.A. Agha, Qolsr multi-path routing for mobile Adhoc [4] networks based on multiple metrics: bandwidth and delay, in: IEEE Vehicular Technology Conference, Los Angeles, CA, USA, 2004, pp.2181-2184
- [5] M. Kun, Y. Jingdong, R. Zhi, The research and simulation of multipath OLSR for mobile ad hoc network, in: International Symposium on Communications and Information Technologies (ISCIT), 2005, pp.540-543.
- [6] J. Eriksson, M. Faloutsos and S. Krishnamurthy. "DART: Dynamic Address Routing for Scalable Ad Hoc and Mesh Networks". in IEEE- ACM Transactions on Networking, vol. 15, no. 1, April 2007, pp. 119-132.
- [7] M.Caleffi, G.Ferraiuolo and L.Pauro, "On Reliability of Dynamic Addressing Protocols in Mobile Ad hoc Networks", Proceedings of WRECOM'07, Wireless Rural and Emergency Communications Conference, Roma, Italy, October 2007.
- [8] R.Krishan and J.A. Silvester. Choice of allocation granularity in multipath source routing schemes. In IEEE INFOCOM'99, volume 1, pages322-329, IEEE, 1993.
- [9] C.S.R. Murthy and B.S. Manoj, Ad Hoc Wireless Networks: Architecture and Protocols, ch. Routing Protocols for Ad hoc Wireless Network, pp. 299.
- [10] A Nasipuri and S.R. Das. On-demand multi-path routing for mobile adhoc networks. In IEEE ICCCN'99, pages 64-70, IEEE, 1999.
- [11] .M. Z. Oo, M. Othman, "Performance Comparisons of AOMDV and OLSR Routing Protocols for Mobile Ad Hoc Network", Second International Conference on Computer Engineering and Applications, 2010.
- [12] T. Clausen and P. Jacquet "Optimized Link State Routing Protocol (OLSR)." RFC 3626, IETF Network Working Group, October 2003
- [13] M. Tarique, K.E. Tepe, S. Adibi, S. Erfani, Survey of multipath routing Protocols for mobile ad hoc networks, Journal of Network and Computer Applications 32 (2009) 1125-1143.
- T. Clausen, C. Dearlove, IETF Request for Comments: 5497, [14] Representing Multi-Value Time in Mobile Ad Hoc Networks (MANETs), March 2009.
- analysis of MP-OLSR for mobile ad hoc networks, in: IEEE WCNC: Wireless Communications and Networking Conference, Las Vegas, USA, 2008.