
ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue4, April 2014

Copyright to IJIREEICE www.ijireeice.com 1359

RISC Processor Design in VLSI Technology

Using the Pipeline Technique

Rakesh M.R

M.Tech student, Department of ECE, Canara Engineering College, Mangalore, Karnataka, India

Abstract: This paper presents the design and implementation of a pipelined 9-bit RISC Processor. The various blocks

include the Fetch, Decode, Execute and Store result to implement 4 stage pipelining. Harvard Architecture is used
which has distinct program memory space and data memory space. The only load and store is used to communicate

with data memory. RISC using pipeline makes CPI as 1 and improves speed of execution. Verilog Language is used for

coding purpose. The proposed architecture is then simulated using Modelsim.

Keywords: RISC features, Pipelining, ALU, Booth multiplier, Barrel shifter

I INTRODUCTION

Reduced Instruction Set Computers (RISCs) are now use

for all type of computational tasks. In the area of scientific

computing, RISC workstations are being increasingly used

for compute task such as DSP, DIP etc. RISC concepts

help to achieve given levels of performance at
significantly lower cost than other systems. Pipelined

RISC improves speed and cost effectiveness over the ease

of hardware description language programming and

conservation of memory and RISC based designs will

continue to grow in speed and ability.

The main features of RISC processor are the instruction

set can be hardwired to speed instruction execution. In the

present work, the design of a 4-bit data width Reduced
Instruction Set Computer (RISC) processor is presented. It

has a complete instruction set, program and data

memories, general purpose registers and a simple

Arithmetical Logical Unit (ALU) for basic operations. In

this design, most instructions are of uniform length and

similar structure, arithmetic operations are restricted to

CPU registers and only separate load and store

instructions access memory. The architecture supports 8

instructions to support Arithmetic, Logical, Shifting, and

load -store operations.

Verilog HDL has evolved as a standard hardware

description language. A hardware descriptive language is a

language used to describe a digital system. HDL’s allows

the design to be simulated earlier in the design cycle in

order to correct errors or experiment with different

architectures. Designs described in HDL are technology-

independent, easy to design and debug, and are usually

more readable than schematics, particularly for large

circuits. More recently Verilog is used as an input for

synthesis programs which will generate a gate-level
description for the circuit. The simulator which is used for

the language is Xilinx ISE and Modelsim. Verilog is

capable of describing simple behaviour. Machine cycle

instructions allow the processor to handle several

instructions at the same time. The processor can work at a

high clock frequency and thus yields higher speed. This

paper is about design of a simple RISC processor and

synthesizing it. The RISC architecture follows single-cycle

instruction execution.

II. RISC PROCESSOR ARCHITECTURE

RISC architecture has been developed as a result of the
801 project which started in 1975 at the IBM T.J.Watson

Research Center and was completed by the early 1980s.

RISC architecture starts with a small set of most

frequently used instructions which determine the pipeline

structure of the machine enabling fast execution of those

instructions in one cycle. The IBM was the first company

to define the RISC (Reduced Instruction Set Computer)

architecture in the 1970s. This research was further

developed by the universities of Berkeley and Stanford to

give basic architectural models.

A. CISC v/s RISC

Processors have traditionally been designed around two

Philosophies: Complex Instruction Set Computer (CISC)

and Reduced Instruction Set Computer (RISC).

The CISC concept is an approach to the Instruction Set

Architecture (ISA) design that emphasizes doing more

with each Instruction using a wide variety of Addressing

modes, the Instructions are of widely varying lengths and

execution times thus demanding a very complex Control

Unit, which tends to large chip area.

On the other hand, the RISC Processor works on reduced

number of Instructions, fixed Instruction length, more

general-purpose registers, load-store architecture and
simplified Addressing modes which makes individual

instructions execute faster, achieve a net gain in

performance and an overall simpler design with less

silicon consumption as compared to CISC.

Nowadays RISC is one of major important device in

computer systems because of following points,

 RISC instructions are executed in single clock cycle,

while most of CISC requires more than one clock

cycle.

 RISC system is more popular.

http://www.ijireeice.com/

ISSN (Online) 2321 – 2004

ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue4, April 2014

Copyright to IJIREEICE www.ijireeice.com 1360

 The technology RISC processors support the floating
point data type.

 RISC machines mostly uses hardwired unit.

 RISC machines require lesser time for its design

implementation.

 RISC processor consumes less power

 RISC machines use load and store instruction to

access data from memory.

B. RISC features

The main features of RISC processor are the instruction

set can be improved to speed instruction execution. No
microcode is needed for single cycle execution. All

instructions are fixed bit in length. This simplifies the

instruction fetch mechanism since the location of

instruction boundaries is not a function of the instruction

type. The processor has small number of addressing

modes. Only load and store instructions access memory,

load/store instructions operate between memory and a

register. The machine cycle time is minimized. The fixed

size of the instructions allows the instructions to be easily

piped. RISC provides a flexible and expandable

architecture that maximizes performance from any given

semiconductor technology. RISC includes extensions to
RISC concepts that help achieve given levels of

performance at significantly lower cost than other systems.

The design process is very fast and cost effective. In this

design, most instructions are of uniform length and similar

structure, arithmetic operations are restricted to CPU

registers and only separate load and store instructions

access memory. The Instruction cycle consists of four

stages namely fetch, decode, execute and Store. After

every instruction fetch, Control Unit generate signals for

the selected Instruction. The architecture supports 8

instructions to support Arithmetic, Logical, Shifting and
Load-store operations.

Fig1: Block diagram of simple RISC processor

The Block diagram of a 9 - bit RISC processor is shown in

Figure1. The RISC processor architecture consists of

Arithmetic Logic Unit (ALU) (including arithmetic and

logical units, barrel shifter, booth multiplier), control unit

(CU), Memory and Register File. RISC processor is

designed with load/store architecture, meaning that all
operations are performed on operands held in the

processor registers and the main memory can only be

accessed through the load and store instructions.

C. Pipelining
Instruction and data are fetched in sequential order so that

the latency incurred between the machine cycles can be

reduced. For increasing the speed of operation RISC

processor is designed with four stage pipelining. The

pipelining stages are Instruction Fetch (IF), Instruction

Decode (ID), Execution (EX) and Store result (ST).

Fig2: instruction execution without pipelining technique

Fig3: instruction execution without pipelining technique

The figure2 shows the execution of instruction without

taking concept of the pipeline. Then there will be long

time required for processor to execute set of instruction.

So CPI will be very high.

The figure3 shows the execution of instruction by using
the technique called pipelining. Execution time required

for processor can be reduced and speed of execution

increases. So CPI can reduce.

Let us take each stage of pipeline technique as,

Instructions fetch cycle (IF):

Send the program counter (PC) to memory and fetch the
current instruction from memory. Update the PC to the

next sequential PC by adding one to the PC.

Instructions decode/register fetch cycle (ID):

Decode the instruction and read the registers

corresponding to register source specifiers from the

register file. Decoding is done in parallel with reading

registers, which is possible because the register specifiers

are at a fixed location in RISC architecture. This technique

is known as fixed-field decoding.

Execution (EX):

The ALU operates on the operands prepared in the prior

cycle, performing one of three functions depending on the

instruction type. Register-Register ALU instruction: The

ALU performs the operation specified by the ALU opcode

on the values read from the register file.

Store result (ST):

 Register-Register ALU instruction or Load instruction:

Write the result into the register file, whether it comes

from the memory system (for a load) or from the ALU (for

an ALU instruction).

http://www.ijireeice.com/

ISSN (Online) 2321 – 2004

ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue4, April 2014

Copyright to IJIREEICE www.ijireeice.com 1361

The function of the instruction fetch unit is to obtain an
instruction from the instruction memory using the current

value of the Program counter (PC) and increment the PC

value for the next instruction. The main function of the

instruction decode unit is to use the 9-bit instruction

provided from the previous instruction fetch unit to index

the register file and obtain the register data values. The

instructions opcode field bits are sent to a control unit to

determine the type of instruction to execute. The type of

instruction then determines which control signals are to be

set and function that Execute unit is to perform, thus

decoding the instruction.

D. Main modules

Let us consider modules of RISC processor. The main

parts of processor is shown in Figure4 and are explained

bellow

Fig4: Basic main modules of processor

These are following basic main parts of the processor:

Control Unit:

It manages the sequence and timing of events carried out

within the processor. The control unit of the RISC

processor examines the instruction opcode bits and

decodes the instruction to generate eight control signals.

Registers:

 Holds values of internal operation, such as the address of

the instruction being executed and the data being

processed i.e. Program Counter Register, Status Register.

Separate program and data memory:

The program memory also called as ROM which contains

instructions of the processor. Each instruction is 9 bit and

there are 8 instructions are there.

The data memory which also called as RAM which is

temporary memory and used to store the data values need
for processor and data values coming from processor after

processing.

Load and store:
Processor which communicates with memory only by

using load and store instruction. Load instruction which

load the data value from memory to register and store

instruction which store the value from register to RAM

memory.

 Arithmetic Logic Unit (ALU):
The arithmetic/logic unit (ALU) executes all arithmetic

and logical operations. Arithmetic operations either take

two registers as operands. The result is stored in a third

register.

The arithmetic/logic unit can perform arithmetic

operations or mathematical calculations like addition, and

subtraction and also performs logical operations include

Boolean comparisons, such as AND, OR, XOR, NAND,

NOR and NOT operations.

Barrel Shifter:

A barrel shifter is a digital circuit that can shift a data

word by a specified number of bits in one clock cycle. It

can be implemented as a sequence of multiplexers and in

such an implementation the output of one Mux is

connected to the input of the next Mux in a way that

depends on the shift distance. For example, take a four-bit

barrel shifter, with inputs A, B, C and D. The shifter can

cycle the order of the bits ABCD as DABC, CDAB, or

BCDA; in this case, no bits are lost. That is, it can shift all
of the outputs up to three positions to the right. The barrel

shifter has a variety of applications, including being a

useful component in microprocessors (alongside the ALU.

A barrel shifter is a combinational logic circuit with n data

inputs, n data outputs, and a set of control inputs that

specify how to shift the data between input and output. A

barrel shifter that is part of a microprocessor CPU can

typically specify the direction of shift, the type of shift and

the amount of shift.

Fig5: block diagram of barrel shifter

In this paper the four bit data _in taken with clock and

reset inputs. The data_out is the shifting for every clock

cycle and it shows the barrel shifter operation. The block

diagram of barrel shifter with input and output is shown in

Figure5. The simulation result of the barrel shifter is

shown in Figure6.

Fig6: simulation waveform for barrel shifter

http://www.ijireeice.com/

ISSN (Online) 2321 – 2004

ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue4, April 2014

Copyright to IJIREEICE www.ijireeice.com 1362

Booth’s Multiplier:
Booth's multiplication algorithm is a multiplication

algorithm that multiplies two signed binary numbers in

two's complement notation. Booth used desk calculators

that were faster at shifting than adding and created the

algorithm to increase their speed. The area and speed of

the multiplier is an important issue, increment in speed

results in large area consumption and vice versa.

Multipliers play vital role in most of the high performance

systems. Performance of a system depends to a great

extent on the performance of multiplier thus multipliers

should be fast and consume less area and hardware. For

this one multiplier is used with Booth’s Algorithm. The
two main advantages of this algorithm are speed and the

ability to do signed multiplication (using two’s

complement) without any extra conversions.

Fig7: block diagram of booth multiplier

In this paper the four bit input, eight bit output with clock

and reset inputs are taken to simulate the algorithm. The

block diagram of booth multiplier with input and output is

shown in Figure7. The simulation result of booth

multiplier is shown in Figure8.

Fig8: simulation waveform for booth multiplier

E. Instruction Set

This processor which having some of instruction set such

as: Arithmetic Instruction, Shift Instructions, and Load and

store instructions. There are eight instructions each of 9 bit

wide. Opcode of 3bit and three operands of each 2 bit. The

instruction format is of register based. Addressing mode is

register addressing mode. Opcode and corresponding

operation of processor is shown in Figure9. Instruction

format for Processor is shown in Figure10.

Fig9: opcode and corresponding operation of processor

Fig10: instruction format for Processor

III. SIMULATION RESULT
The simulation of RISC processor is done by using the

Modelsim simulator, designed using Verilog HDL in

XILINX ISE. The RTL schematic for single RISC

processor is shown in Figure11. The Technological

schematic for single RISC processor is shown in

Figure12.The simulation result of RISC processor which

having 8 instructions of 9 bit each. Instead of common

shifter and multiplier here we used the Barrel shifter and

booth multiplier respectively. The simulation waveform is

getting by using Modelsim simulator which consists of 8

instructions including barrel shifter and booth multiplier is
shown in Figure 13.

Fig11: RTL schematic for single RISC processor

Fig12: Technology schematic for single RISC processor

http://www.ijireeice.com/

ISSN (Online) 2321 – 2004

ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 2, Issue4, April 2014

Copyright to IJIREEICE www.ijireeice.com 1363

Fig13: waveform for single RISC processor

IV. CONCLUSION
In this paper the 9 bit RISC Processor core has been

design and simulated in Xilinx ise13.1. The design has

been achieved using Verilog and simulated with Modelsim

simulator. Most of the goals were achieved and simulation

shows that the processor is working perfectly. Every

instruction is executed in one clock cycles with 4-stage

pipelining. The design is verified through simulations.

REFERENCES
[1] R. Uma, Mar-Apr 2012, “Design and Performance Analysis of 8-bit

RISC Processor using Xilinx Tool”

[2] Galani Tina G., Riya Saini and R.D.Daruwala, July-2013, “Design

and Implementation of 32 – bit RISC Processor using Xilinx”

[3] Galani Tina R.D.Daruwala, February 2013, “ Performance

Improvement of MIPS Architecture by Adding New Features”

[4] Samiappa Sakthikumaran,S.Salivahanan and V.S.Kaanchana

Bhaaskaran , June 2011, “16-Bit RISC Processor Design For

Convolution Application”,IEEE International Conference on

Recent Trends In Information Technology, pp.394-397.

[5] Rohit Sharma, Vivek Kumar Sehgal, Nitin Nitin1, Pranav Bhasker,

Ishita Verma , 2009, “Design And Implementation Of 64-Bit RISC

Processor Using VHDL”,UKSim : 11th International Conference

on Computer Modeling And Simulation, pp. 568 – 573.

[6] Rupali S. Balpande and Rashmi S. Keote.2011, “Design of FPGA

based Instruction Fetch & Decode Module of 32-bit RISC (MIPS)

Processor, International Conference on Communication Systems

and Network Technologies pp. 409 – 413

[7] Xiao Li, Longwei Ji, Bo Shen, Wenhong Li, Qianling Zhang,

“VLSI implementation of a High-performance 32-bit RISC

Microprocessor”, Communications, Circuits and Systems and West

Sino Expositions, IEEE 2002 International Conference on ,Volume

2, 2002 ,pp.1458 – 1461.

[8] Kusumlata Pisda, Deependra Pandey, “Realization & Study of

High Performance MIPS RISC Processor Design Using VHDL”,

International Journal of Emerging trends in Engineering and

Development, Volume 7, Issue 2, November 2012, pp. 134 – 139,

ISSN: 2249 – 6149.

[9] Kirat Pal Singh, Shivani Parmar, “VHDL Implementation of a

MIPS – 32 bit Pipeline Processor”, International Journal of Applied

Engineering Research, Volume 7, Issue 11, ISSN: 0973 – 4562.

BIOGRAPHY

Mr. Rakesh M.R received his B.E degree

in Electronics and Communication from

KVG College of Engineering Sullia in

2012. Currently he is pursuing M.Tech

degree in Electronics at Canara Engineering

College, Mangalore. His areas of interest are VLSI and

Image Processing.

http://www.ijireeice.com/

	Instruction Set

