
 

Copyright to IJIREEICE                                                                                          www.ijireeice.com                                                                                                           407 

 

High Resolution Spectral Analysis useful for the 

development of Radar Altimeter 
 

Bency Abraham
1
, Lal M.J.

2
, Abraham Thomas

3
 

Student, Department of AEI, Rajagiri School of Engineering and Technology, Ernakulam, India
1
 

Scientist, RFSD, AVN,  Vikram Sarabhai Space Centre Thiruvananthapuram, India
 2

 

Professor, Department of AEI,  Rajagiri School of Engineering and Technology, Ernakulam, India
 3

 

 

Abstract: This paper presents a comparative study of high resolution spectral estimation methods applied to Radar 

Altimeter. Spectral estimation methods such as Yule-Walker, Burg, Covariance, modified Covariance, MUSIC, minimum 

norm, ESPRIT methods are briefly reviewed. Computer simulations have been made using a test signal with six frequencies 

in order to evaluate the probability of detection of each frequency. High resolution spectral estimates showed much more 

spectral details than the Fourier spectrum and also it exhibits consistent peak position when compared to the lower 

resolution technique. 
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I. INTRODUCTION 

Radar Altimeter is used to measure the altitude of an aircraft 

during low altitude flights and landing phase. It is an all-

weather altitude measurement system. The transmitter 

antenna transmits RF signal at 4.25 to 4.35 GHz and 

receiving antenna receives it after some delay. The delay is 

measured internally and is proportional to the altitude of the 

vehicle above ground level. It measures altitude more 

directly, using the time taken for a radio signal to reflect 

from the surface back to aircraft. In Radar altimeter, 

transmitter output is frequency modulated. The signal 

received from the ground is of a different frequency than the 

transmitter at the time of arrival. The frequency of the return 

signal is the frequency of the transmitter at the time signal 

left the transmitter. If the rate of frequency change is noted, 

the frequency difference between the oscillator and the 

received signal is measured; the time can be determined. A 

block diagram of a FM-CW Radar Altimeter is shown in fig. 

1 

Figure1.Principle of FM-CW Radar Altimeter. 

 

 

 

 

In the frequency modulated CW Radar Altimeter, the 

transmitter frequency is changed as a function of time, in a 

known manner . Assume that the transmitter frequency 

increases linearly with time as shown in fig 2 a. If there is a 

reflecting surface at a distance R, an echo will return after a 

time T=2R/C. If the echo signal is heterodyned with a 

portion of the transmitter signal in a nonlinear element such 

as diode, a beat note fb will be produced. The beat note is a 

measure of the altitude of the vehicle. In any practical CW 

radar altimeter, the frequency cannot be continuously 

changed in one direction only. Periodicity in the modulation 

is necessary, as in the triangular frequency modulation 

waveform shown in fig 2 (b). The resulting beat frequency 

as a function of time is shown in fig 3. The beat frequency is 

of constant frequency except at the turnaround region. If the 

frequency is modulated at a rate fm over a range ∆f, the beat 

frequency is given by, 

𝑓𝑏 =
4𝑅𝑓𝑚 ∆𝑓

𝑐
    (1) 

 

Thus the measurement of beat frequency determines the 

range R [1]. 

 
Figure 2. (a)Linear modulation (b) Triangle modulation 
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Figure 3. Beat frequency as a function of time. 

 

A portion of the transmitter signal acts as a reference signal 

required to produce the beat frequency. The beat frequency 

is amplified and limited to remove any amplitude 

fluctuations. The frequency of the amplitude limited beat 

note is measured using DSP processor with digital 

techniques. The frequency is obtained by using the Discrete 

Fourier Transform. This paper describes an investigation of 

high resolution spectral analysis applied to the FMCW 

Radar Altimeter for estimating the range. 

II. HIGH RESOLUTION SPECTRAL ANALYSIS 

 

Spectral analysis is any signal processing method that 

characterizes the frequency content of a measured signal[2]. 

Spectral analysis with DFT computes a uniformly spaced set 

of N spectral amplitudes from an N-point data window. 

High-resolution determination of amplitude, frequency, and 

phases requires that N be large enough for the chosen 

resolution[3]. Spectral estimation is useful when the 

spectrum is rapidly changing. It tries to find the best fit of 

the data to a finite set of trial functions in the data domain, 

also allows the frequency values and other parameters be 

finely resolved. Spectrum estimation is useful,even for static 

spectra, instead of using sinusoids to fit the signal, we can 

use any arbitrary set of trial functions. The observation 

period or number samples is finite for real world 

applications. Thus, using the limited available information 

spectral content is estimated. In this paper, we have 

considered seven different methods: Yule-Walker, Burg, 

Covariance, modified Covariance, MUSIC (MUltiple Signal 

Classification), Minimum norm, ESPRIT (Estimation of 

Signal Parameters via Rotational Invariance Technique). 

When a block of signal samples is available, it may be too 

short to provide enough frequency resolution in the 

periodogram spectrum [4]. In autoregressive method of 

spectral estimation, instead of trying to estimate power 

spectrum directly from the data, we model the data as the 

output of a linear system driven by white noise, and then 

attempt to estimate the parameters of that linear system. 

Estimates are found by solving a system of linear equations, 

and the stability of the estimated AR polynomial can be 

guaranteed [5]. High resolution methods aim to separate the 

observation space in a signal subspace, containing only 

useful information, and its orthogonal complement, called 

noise subspace. This decomposition makes the spectral 

analysis more robust and highly improves the spectral 

resolution [6]. 

 

A. Yule-Walker method 

The Yule-Walker AR method of spectral estimation 

computes the AR parameters by forming a biased estimate of 

the signal’s autocorrelation function, and solving the least 

squares minimization of the forward prediction error. This 

results in the Yule-Walker equations. The use of a biased 

estimate of the autocorrelation function ensures that the 

autocorrelation matrix above is positive definite. Hence, the 

matrix is invertible and a solution is guaranteed to exist. 

Moreover, the AR parameters thus computed always result 

in a stable all-pole model. The AR coefficients are obtained 

by solving the normal equations [7]. 
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     (2) 

Once the AR parameters have been estimated, then the AR 

spectral estimate is computed as 

𝑃𝐴𝑅 𝑒
𝑗𝜔  =

𝑏 0 

1+ 𝑎𝑝  𝑘 𝑒−𝑗𝑘𝜔𝑝
𝑘=1

   (3) 

where, 

𝑟𝑥 𝑘 =
1

𝑁
 𝑥 𝑛 + 𝑘 𝑥∗(𝑛)𝑁−1−𝑘

𝑛=0 ;𝑘 = 0,1, … , 𝑝 (4) 

𝑏 0 = 𝑟𝑥 0 +  𝑎𝑝 𝑘 𝑟𝑥(𝑘)
𝑝
𝑘=1    (5) 

 

An artifact that may be observed in this method is spectral 

line splitting. 
 

B. Covariance method 

The covariance method for AR spectral estimation is based 

on minimizing the forward prediction error. This method fits 

an autoregressive (AR) model to the signal by minimizing 

the forward prediction error in the least squares sense. For 

short data records the covariance method produces higher 

resolution spectrum estimates than the Yule-Walker method. 

The covariance method requires finding the solution to the 

set of linear equations [7], 

 

𝑟𝑥 1,1    𝑟𝑥 2,1  ⋯   𝑟𝑥 𝑝, 1 

𝑟𝑥 1,2    𝑟𝑥 2,2  ⋯   𝑟𝑥 𝑝, 2 
⋮                ⋮                ⋮

𝑟𝑥 1, 𝑝    𝑟𝑥 2, 𝑝  ⋯   𝑟𝑥 𝑝, 𝑝 

 

 
 
 
 
𝑎𝑝 1 

𝑎𝑝 2 

⋮
𝑎𝑝(𝑝) 

 
 
 

= − 

𝑟𝑥 0,1 

𝑟𝑥 0,2 
⋮

𝑟𝑥 0, 𝑝 

                              (6) 

where, 
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𝑟𝑥 𝑘, 𝑙 =
1

𝑁
 𝑥 𝑛 − 𝑙 𝑥∗ 𝑛 − 𝑘 𝑁−1

𝑛=𝑝 ;  (7) 

𝑘 = 0,1, … , 𝑝 

 

In this method, no windowing is performed in the data for 

the formation of autocorrelation estimates. 

 

C. Modified Covariance method 

The modified covariance method is based on minimizing the 

forward and backward prediction errors. This method fits an 

autoregressive (AR) model to the signal by minimizing the 

forward and backward prediction errors in the least squares 

sense [7]. Here autoregressive parameters are found by 

solving a set of linear equations given in equation 6 with  

𝑟𝑥 𝑘, 𝑙 =  [𝑥 𝑛 − 𝑙 𝑥∗ 𝑛 − 𝑘 + 𝑥 𝑛 − 𝑝 + 𝑙 𝑥∗  𝑛 −𝑁−1
𝑛=𝑝

𝑝+𝑘]                                  (8)  

This method is not subjected to spectral line splitting, gives a 

statistically stable spectrum estimates with high resolution. 

Also peak locations are tend to be less sensitive to phase. 

 

D. Burg method 

The Burg method for AR spectral estimation is based on 

minimizing the forward and backward prediction errors 

while satisfying the Levinson-Durbin recursion [7],[8]. The 

primary advantages of the Burg method are resolving closely 

spaced sinusoids in signals with low noise levels, and 

estimating short data records, in which case the AR power 

spectral density estimates are very close to the true values. 

The accuracy of the Burg method is lower for high-order 

models, long data records, and high signal-to-noise ratios. In 

contrast to other AR estimation methods, the Burg method 

avoids calculating the autocorrelation function, and instead 

estimates the reflection coefficients directly. In the analysis 

of sinusoids in noise, this algorithm is subject to spectral line 

splitting and peak locations are highly dependent upon the 

phases of the sinusoids. As the model order for the Burg 

method is reduced, a frequency shift due to the initial phase 

of the sinusoids will become apparent. 

 

E. MUSIC (MUltiple SIgnal Classification) 

This method is based on the Eigen decomposition of 

autocorrelation matrix into subspace, a signal subspace and a 

noise subspace . Once these subspaces have been 

determined, a frequency estimation function is then used to 

extract estimates of frequencies. Let Rx be the M*M 

autocorrelation matrix of x(n) .If the eigen values are 

arranged in the decreasing order λ 1≥λ2≥ λ3 ≥…≥λM, and if  v1, 

v2, …vM  are the corresponding Eigen vectors, then we 

divide Eigen vectors into two groups: p signal Eigen vectors, 

M-p noise Eigen vectors. The frequency estimation function 

is given by 

𝑃𝑀𝑈    𝑒
𝑗𝑤  =

1

  𝑒𝐻𝑣𝑖 ²
𝑀
𝑖=𝑝+1

    (9) 

 

The frequencies of the complex exponentials are taken as the 

locations of the p large peaks in 𝑃𝑀𝑈    𝑒
𝑗𝑤   [7]. 

Theoretically, according to equation 9 the estimate value 

tends towards infinity whenever it is evaluated at a 

frequency corresponding to a signal spectral component. 

Practically, because of the limited calculation accuracy and 

estimation errors, the estimate values are always finite. Since 

very sharp peaks are detected, the spectral resolution is 

highly improved. Also their amplitudes lose any physical 

significance. Due to this, MUSIC algorithm is often 

considered a frequency estimate rather than a power spectral 

density estimate 

 

F. Minimum norm method 

Another Eigen decomposition based method is the minimum 

norm algorithm. This algorithm uses a single vector a that is 

constrained to lie in the noise subspace, and the complex 

exponential frequencies are estimated from the peaks of the 

frequency estimation function [7]. 

𝑃𝑀𝑁   𝑒
𝑗𝑤  =

1

 𝑒𝐻  𝑎 ²
                (10) 

The problem is to determine which vector in the noise 

subspace minimizes the effects of the spurious zeros on the 

peaks of 𝑃𝑀𝑁   𝑒
𝑗𝑤  . The minimum-norm method, as its 

name implies, seeks to minimize the norm of a in order to 

avoid spurious peaks in its pseudospectrum. We formulate 

constrained minimization problem as 

 

   𝑚𝑖𝑛 𝑣𝐻𝑃𝑛𝑣               (11) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

 

        𝑣𝐻(𝑃𝑛
𝐻𝑢1)=1                     (12)                              

 

By solving we get, 𝑣 = 𝜆𝑃𝑛
−1 𝑃𝑛

𝐻𝑢1 = 𝜆𝑢1              (13) 

 

 

Minimum norm solution is  

 𝑎 = 𝑃𝑛v=𝜆𝑃𝑛  𝑢1 =
𝑃𝑛  𝑢1

𝑢1
𝐻𝑃𝑛  𝑢1

               (14) 

 

which is simply the projection of the unit vector onto the 

noise subspace, normalized so that the first coefficient is 

equal to one. In terms of the eigenvectors of the 

autocorrelation matrix, the minimum norm solution may be 

written as 

𝑎 =
(𝑉𝑛𝑉𝑛

𝐻 )𝑢1

𝑢1
𝐻 (𝑉𝑛𝑉𝑛

𝐻 )𝑢1
                                  (15) 

 

G. ESPRIT (Estimation of Signal Parameters via Rotational 

Invariance Technique) 

It exploits a deterministic relationship between subspaces. In 

this method, signal subspace is estimated from the data 

matrix rather than the estimated correlation matrix. The 

essence of ESPRIT lies in the rotational property between 

staggered subspaces that is invoked to produce the frequency 

estimates [9]. In the case of a discrete-time signal this 

property relies on observations of the signal over two 
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identical intervals staggered in time. Consider a single 

complex exponential  

s0 (n)=𝑒𝑗2∏𝑓𝑛   with complex amplitude α frequency f . 

 
Figure 4. Test signal used for simulation 

 

This signal has the following property 

 

s0 (n+1)=𝛼𝑒𝑗2∏𝑓(𝑛+1) = s0 (n)ej2∏f                 (16) 

that is, the next sample value is a phase-shifted version of 

the current value. This phase shift can be represented as a 

rotation on the unit circle 𝑒𝑗2∏𝑓
 . Consider a signal 

consisting of a signal made up of complex exponentials, and 

the noise component w(n). 

𝑥 𝑛 = 𝛼𝑝   
𝑃
𝑝=1 𝑣 𝑓𝑝 𝑒

𝑗2𝜋𝑛𝑝 + 𝑤 𝑛 = 𝑉𝜑𝑛𝛼 + 𝑤 𝑛  

= 𝑠 𝑛 + 𝑤(𝑛)                (17) 

 

The matrix ∅ is the diagonal matrix of phase shifts between 

neighboring time samples of the individual, complex 

exponential components of s(n) 

∅ = 𝑑𝑖𝑎𝑔 ∅1 , ∅2 , … , ∅𝑝  

 

                                = 
𝑒𝑗2𝜋𝑓1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑒𝑗2𝜋𝑓𝑝

              (18) 

 

 

where ∅𝑝=𝑒𝑗2𝜋𝑓𝑝 for p=1,2,…,P. Since the frequencies of the 

complex exponentials 𝑓𝑝  completely describe this rotation 

matrix, frequency estimates can be obtained by finding ∅ . 

 

III. EXPERIMENTAL RESULTS 

Numerical experiments have been made with a sinusoidal 

test signal containing six frequencies having same amplitude 

and same phase. Fig 4 shows the Fourier spectrum of the test 

signal. Note that no windowing has been performed, to avoid 

a decrease in range resolution, resulting in lower side lobes. 

Dashed lines indicate the position of each scattering points. 

Performance criteria have been selected using the following 

guiding rules: different methods should be compared on a 

common basis with respect to their capabilities to detect 

groups of closely spaced and isolated spectral lines; they 

should provide an estimation of the variability of the 

frequency estimate as well as some other parameters like 

amplitude and phase, and also a measure of the bias. 

Fig 5, 6, 7, 8, shows an overlay plot of 10 different 

realization of spectrum estimation using four different 

methods of autoregressive spectral estimation. Among the 

four autoregressive PSD estimate, such as Yule Walker, 

Covariance, Modified Covariance, and Burg method, Yule- 

Walker method produces AR spectra for short data records 

with least resolution. The Burg and covariance methods 

produce comparable AR spectral estimates. The modified 

covariance method is best for sinusoidal components in the 

data. Some problems with the Burg method, including 

spectral line splitting and bias of the frequency estimate, 

appear to be eliminated when modified covariance method is 

used. The modified covariance is fairly insensitive to the 

initial phase and is an accurate estimate of the sinusoid 

frequency. The modified covariance method, unlike the Burg 

algorithm, does not guarantee a stable linear prediction filter. 

If a large model order is selected relative to the number of 

data samples, AR spectral estimates tend to exhibit spurious 

peaks. Lowering the selected order to prevent spurious peaks 

also reduces the resolution. The table I shows output of the 

frequency estimation using ESPRIT technique. Fig 9, 10 

shows an overlay plot of 10 different realization of 

frequency estimation using MUSIC and minimum norm 

method. With the high resolution techniques such as MUSIC 

and minimum norm method, we can see that the spectrum is 

consistent with the Fourier transform and shows much more 

spectral details. Closely spaced spectral pairs can easily be 

seen in the MUSIC compared with Fourier spectrum. 

MUSIC, minimum norm, ESPRIT requires the knowledge of 

number of complex exponentials in the signal. Note that 

MUSIC and minimum norm method are nonlinear frequency 

estimator and consequently, the power of each spectral line 

cannot be related with the signal power. These are not true 

PSD estimators because they do not preserve the measured 

process power, also the autocorrelation sequence can’t be 

recovered by Fourier transforming the frequency estimators. 
                                   
            Table I 

OUTPUT OF ESPRIT TECHNIQUE 
Input 

Frequency  

100 150 175 200 300 350 

Estimated 

frequency 

99.9 150.20 175.06 200.1 300.00 349.99 

 

We perform a statistical study on the estimation of one 

spectral component with the frequency 200 Hz by means of 

the four methods of parametric estimation. Consider that the 

SNR sweeps the range from 0 dB to 20 dB and figure 11 

shows a plot of the variance variation of each obtained 

estimate over 1,000 outcomes. The variance of modified 

covariance method is slightly lower than other parametric 

methods. 
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Figure 5. Spectrum estimation using Yule-Walker method 

 

 
Figure 6. Spectrum estimation using Covariance method 

 

 

 

 
Figure 7. Spectrum estimation using Modified Covariance method 

 

 

 
      Figure 8. Spectrum estimation using Burg method 

 

 
Figure 9. Frequency estimation using MUSIC algorithm 

  

 

 
Figure 10. Frequency estimation using Minimum norm algorithm 

 

Figure 12 shows a plot of variance variation using MUSIC, 

ESPRIT, and Fourier Transform method. The variances of 

ESPRIT estimate is slightly lower than two other estimates 

due to the exact calculation of the signal frequency, while 
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the accuracy of the Fourier and MUSIC methods is limited 

by the number of considered calculation points. 

 

IV. CONCLUSION 

High resolution frequency estimation methods such as 

MUltiple SIgnal Classification (MUSIC), minimum norm 

method, ESPRIT have been promoted in the research 

literature as having better resolution and better frequency 

estimation characteristics than the autoregressive spectral 

estimators. This super resolution technique can be used in 

Radar Altimeter for estimating the range. Improved 

performance is due to division of information in the 

autocorrelation matrix into two vector subspaces i.e., signal 

subspace and noise subspace.  

 
Figure 11. Statistical behavior of parametric methods. 

 
Figure 12. Statistical behavior using MUSIC, ESPRIT, Fourier Transform. 

 

Functions of the vectors in either the signal or noise  

subspace can be used to create frequency estimators that, 

when plotted, show sharp peaks at the frequency locations of 

sinusoids or other narrow band spectral components. 
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