Single phase online Uninterruptible power supply with unity power factor

Devika Hebbal¹, Mr. Naveen J ²

PG Scholar, Electrical, NMAMIT, Nitte, India¹
Assistant Professor, Electrical, NMAMIT, Nitte, India²

Abstract: A power factor of one is the main goal of any electric utility to have a better efficiency. Here, a single phase Uninterruptible power supply(UPS) is proposed which has a unity power factor for all linear and nonlinear loads. The proposed UPS uses an active PFC circuit to achieve unity power factor, a battery charger using Flyback converter, push pull converter is used as a battery discharger, a half bridge inverter for DC-AC conversion. Simulations are carried out for two conditions one for power factor variation in the mains and the other during power outage. Simulations are done using MATLAB/Simulink.

Keywords: UPS, Active PFC circuit, Flyback converter, Push Pull converter, half bridge inverter.

I. INTRODUCTION

Uninterruptible power supplies are designed to have continuous power supply even during the conditions of power outage. UPS are of the following types, offline UPS, and online UPS. Offline UPS is also called as passive standby UPS, online UPS has two kinds-line interactive and double conversion UPS. Here a double conversion UPS is proposed which is capable of delivering a regulated sinusoidal output voltage with low total harmonic distortion and a unity power factor for linear and nonlinear loads. The advantages of using a double conversion UPS is that they are very tolerant to variations in the supply voltage and their output is highly regulated. Also, there is no delay between normal operation and inverter operation. But the main disadvantage of double conversion UPS is it has very low power factor and low efficiency. Because the input rectifier changes the shape of input current waveform. Hence a PFC circuit has to be added to improve the power factor. Double conversion UPS comprises of a rectifier for AC-DC conversion, a battery charging circuit an inverter and a bypass switch/static switch. Here the inverter always supplies the load during normal as well as inverter operation. Hence its power rating should fulfil 100% of the power demanded to charge the battery banks and also to meet the load requirement.

II. PROPOSED SYSTEM

The fig 1 shows the online double conversion UPS and it consists of rectifier, PFC circuit. A battery charger, a battery set, a DC-DC converter, an inverter a bypass switch.

The above model shown is the proposed single phase UPS with unity power factor. It consists of a bridge rectifier with active PFC circuit. With the use of power electronics, the shape of current waveform drawn by the load can be changed, so that the power factor can be improved. This method is known as active power factor correction. Here, a boost converter is placed in between the bridge rectifier and input capacitors. This circuit will help to maintain a constant DC bus voltage at its output and draws the current in phase with the line voltage. The voltage and frequency should be same as the line voltage. This circuit will help to achieve unity power factor for all linear and nonlinear loads. A flyback converter is designed to charge a battery of 12V. The battery used is a lead acid battery. The push-pull converter is used to boost the voltage and to maintain the DC voltage constant at the input of the
inverter, SPWM technique is used and an LC filter is designed at the output of the inverter to get a pure sinusoidal voltage.

III. SIMULATIONS

The Fig 3 shows the simulink model of single phase UPS. Where the mains is supplying the load. Whenever the power factor of mains goes below 0.9 the UPS will supply the load. For any kind of load the UPS will have a unity power factor.

A. SIMULATION OF VARIATION OF POWER FACTOR IN THE MAINS

The Fig 6 shown below is the simulink model of power factor variation in the mains i.e., power factor goes below 0.9 and hence UPS supplying the load with unity power factor.

B. Simulation of mains supplying the load

Fig 9 shown below is the simulation of mains supplying the load. The load is being supplied by the mains, the output is a regulated 230 Vrms sinusoidal waveform.

Fig 7 & 8 show the simulation results of output voltage and output current of UPS supplying the load during power factor variation in the mains. The output voltage is a regulated sinusoidal waveform.
The above model shows the operation of mains. Here the inverter is off. A comparator is used to compare the voltage between the reference voltage and the mains voltage. If the voltage from the mains is 230V then the mains switch will get closed and the inverter switch will get open. Hence the load is supplied by mains. The results of output voltage and output current are as shown below.

C. Simulations during power outage
The model shows the operation of UPS during power outage. Here a comparator is used to know the mains voltage and reference voltage. If the mains voltage is zero or during power outage the inverter switch closes and the mains switch closes. Hence the UPS will supply the load.
IV. CONCLUSION

In this paper a single phase online UPS with unity power factor is proposed. The proposed system is simulated using MATLAB/Simulink. The simulations are carried out for power factor variation in mains and power outage conditions, both the results are verified. The output voltage of single phase UPS is a pure regulated sine wave, and the UPS achieves unity power factor for all types of loads. Also there is no delay between normal operation and inverter operation.

ACKNOWLEDGMENT

Authors gratefully acknowledge the support received from NMAM Institute of Technology, Nitte. Education Trust and VTU, Belagavi in carrying out the research work.

REFERENCES

[8] Practical Control Implementation of a Three- to Single-Phase Online UPSEung-Ho Kim, Jung-Min Kwon, Student Member, IEEE, Jae-Kyu Park, and Bong-Hwan Kwon, Member, IEEE