Off Grid Solar Biomass Hydro Hybrid System for Renewable Energy Production for Village Pachori

Harshit Khede¹, Vineet Mishra²

M. Tech Scholar, Oriental University, Indore (M.P.) India¹
Asst. Prof., Department of Electrical & Electronics Engineering, Oriental University, Indore (M.P.) India²

Abstract: The paper present a scheme for renewable and alternative sources of electricity remote and tribal village pachori. The proposed work has done with simulation on HOMER software for off grid approach. The ultimate motto of this presented paper is to analysis the result of the approache for feasibility.

Keywords: HOMER, PV, Biomass, Bus bar, COE.

I. INTRODUCTION

Earlier the energy need of any human society was very limited due to limited expansion of such conversion work is quit simple and limited & its consumption was a linear process but in today's era electrical power system is one of the complex networks in the world with invention of new techniques of power generation and utilization. The HOMER software is a very fast tool for designing and analyzing hybrid power system with renewable energy sources. HOMER is a computer model that simplifies the task of designing distributed generation systems - both on and off-grid. HOMER’s optimization and sensitivity analysis.

II. PROPOSED SYSTEM

The proposed hybrid alternative energy system comprises of biomass generator, PV, and micro hydal. Solid State Converter is also used for conversion of its output to AC. This system is design for off grid system. Pachori is a small tribal village located in Burhanpur district, Madhya Pradesh with total 1300 families residing as per Population Census 2011. Among which approximately 1000 tribal families resides for way from main village. The survey conducted in village for for utilization of the electrical equipments available like TV, Fan, and Light, etc. but in the absence of power they could not used the device. The total load peak load with daily electricity consumption is shown in table 1:

Table 1 Electric Load of Study Area Village Pachori (M.P.)

<table>
<thead>
<tr>
<th>Load Category</th>
<th>Peak Load</th>
<th>Daily Electricity Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cottage Houses</td>
<td>12 KW</td>
<td>216KWH/D</td>
</tr>
<tr>
<td>Irrigation System</td>
<td>200 KW</td>
<td>4.6 MWH/D</td>
</tr>
<tr>
<td>Total Load (KWH/Day)</td>
<td>4.816</td>
<td></td>
</tr>
</tbody>
</table>

The off grid or standalone model for the above concept is designed with all three sources of electricity biomass, PV and hydal system. The hydal system has chosen becosue of Solar PV is selected as most of month availability of solar radiations while due to forest and agricultural area; agricultural wastes are available in bulk which has no use of other purpose even in some cases villagers destroy them with fire so its availability is at very low cost. Figure 2 shows the off grid model. The Village Pachori is far away from main city there is more power cut problem only 5 to 7 hours supply in a day and all time villagers suffer electricity problem. The Solar-Biomass-hydal system is the best option for fulfill the villagers electricity need as the village is nearby fe small mountains and fall which has enough water available to delevop a micro hydal system.

III. OFF GRID MODEL

The HOMER software automatic consider the different size of components for feasible model according to pre defined size by user and gives the number of simulated results in simulated results the best optimized result is shown as in fig 2.

IV. RESULT AND DISCUSSION

The HOMER software automatic consider the different size of components for feasible model according to pre defined size by user and gives the number of simulated results in simulated results the best optimized result is shown as in fig 2.
The total capital cost of all the components is $219520, replacement cost after components life completed $93505, during running time, Fuel Cost $203268, and salvage cost $-4731 salvage cost mean after completed system life usable components cost. The NPC $485217 and COE have shown in table at different cost of biomass and different carbon percentage. Figure 3 shows all these details.

In hybrid system architecture of hybrid system is as 400KW PV system, 200KW Biomass generator system, 33.4 KW hydak system 400KW Inverter, 100KW Grid are used. The cash flow chart of solar-biomass hybrid system show that the cost of energy per unit is reduces after first year because after installation year per year expenditure is low only fuel and operating cost invest and after 5 year replacement cost in spend. Figure 4 shows the cash flow of off grid model.

In solar-biomass hybrid system the number of PV array is used 400 kW, 300 KW biomass generators to fulfill the electric load requirement 4.816MWh/d. The total production of power is 260324 kWh/yr, in which power 185401 kWh/yr (71%) is by Biomass generator, 745953 kWh/yr (29%) by Solar PV. The bar graph show the electricity production by solar and biomass as upper yellow color bar show the solar panels output power and lower color show the biomass generator output. Figure 5 shows the electricity production by off grid model.
Figure 8 tells the biomass generation is for off grid model

Figure 8 Biomass Electricity generation off grid

Figure 9 is about the grid data

Figure 9 Grid Data

Table 2 is discusses the COE and NPC for off grid system

Table 2 Result of COE & NPC

<table>
<thead>
<tr>
<th>S. No</th>
<th>COB/Ton (In Rs.)</th>
<th>Residual Flow of Water (In Lt.)</th>
<th>Carbon in Biomass (In %)</th>
<th>Off Grid Connected Model</th>
<th>COE/KW H (In Rs.)</th>
<th>NPC (In Rs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>276</td>
<td>5/Lt</td>
<td>8</td>
<td></td>
<td>1.173</td>
<td>33479973</td>
</tr>
<tr>
<td>3</td>
<td>345</td>
<td>5/Lt</td>
<td>8</td>
<td></td>
<td>1.311</td>
<td>36969372</td>
</tr>
<tr>
<td>5</td>
<td>552</td>
<td>5/Lt</td>
<td>8</td>
<td></td>
<td>1.725</td>
<td>47325720</td>
</tr>
</tbody>
</table>

The cost data gives different rates of biomass and same carbon contain and residual flow of water. The tables gives least cost of electricity at lower biomass value and is suitable for rural purpose and gives electricity to a common men.

REFERENCES

[18] By Dr. Recayi Pecen, Dr. MD Salim, & Dr. Marc Timmerman ‘A hybrid solar-wind power generation system as an industrial resource for industrial technology’- Journal of Industrial Technology • Volume 16, Number 3 • May 2000 to July 2000.
[21] International Conference on 5-10 Dec. 2011 in Ahmedabad, Gujarat

BIOGRAPHIES

Harshit khede was born at khandwa and has done BE from SDITS Khandwa and presently pursuing M. Tech from Oriental University Indore.

Vineet Kumar misha has done BE from SGSITS indore and M tech from RGPV Bhopal. Presently he is Asst Prof at Oriental University Indore.