
 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 288

Cost proficient clouds for enquiry services

Santosh Chidambar Deshpande

M.Tech 4
th

 Semester Computer Science, SDIT, Manglore, India

Abstract: Cloud computing as a developing technology drift is expected to restructure the advances in information

technology. In a cost-proficient cloud location, a user can bear a certain degree of interruption while retrieving

information from the cloud to reduce costs. In this paper, we address two important concerns in such an location:

discretion and proficiency. We analyze a remote keyword based data retrieval system that was introduced by

Ostrovsky. Their system allows a user to retrieve data of interest from an untrusted third party without leaking any

information. The disadvantage is that it will cause a thick inquiring overhead acquired on the cloud and thus goes

against the original purpose of cost proficiency. In this paper, we present three effective information retrieval for

graded inquiry systems to decrease inquiring overhead incurred on the cloud. In, effective information retrieval for

graded inquiry system inquiries are categorized into many grades, where a higher graded inquiry can retrieve a higher

percentage of matched data. A user can retrieve data on demand by choosing inquiries of dissimilar grades. This feature

is beneficial when there are a large number of matched data, but the user only needs a small subsection of them. Under

different limitation settings, wide spread appraisals have been conducted on both analytical models and on a real cloud

location, in order to examine the efficiency of our systems.

Keywords: cloud computing, budget adeptness, discrepancy interrogation amenities, discretion.

I. INTRODUCTION

Cloud computing as a developing technology is

predictable to restructure information technology

procedures [1]. Due to the irresistible merits of cloud

computing, e.g., cost-efficiency, litheness and scalability,

more and more administrations choose to outsource their

data for membership in the cloud. As a typical cloud

application, an administration subscribes the cloud

amenities and authorizes its staff to share data in the cloud.

Each files described by a set of keywords, and the staff, as

authorized users, can retrieve data of their interests by

inquiring the cloud with certain keywords. In such

anlocation, how to protect user secrecy from the cloud,

which is a third party outside the security boundary of the

of the administration, becomes a key problem.

User secrecy can be classified into search secrecy and

access secrecy [2]. Search secrecy means that the cloud

knows nothing about what the user is searching for, and

access secrecy means that the cloud knows nothing about

which data are returned to the user. When the data are

stored in the clear forms, a naive solution to protect user

secrecy is for the user to request all of the data from the

cloud; this way, the cloud cannot know which data the

user is really interested in.

While this does provide the necessary secrecy, the

communication cost is high. Remote searching was

proposed by Ostrovsky et al. [3], [4] (referred to as the

Ostrovsky methods in this paper), which allows a user to

retrieve data of interest from an untrusted server without

leaking any information. However, the Ostrovsky methods

has a high computational cost, since it requires the cloud

to process the inquiry (perform homomorphism

encryption) on every file in a collection. Otherwise, the

cloud will learn that certain data, without processing, are

of no interest to the user. It will quickly become a

performance bottleneck when the cloud needs to process

thousands of queries over a collection of hundreds of

thousands of data. We argue that subsequently proposed

improvements, like [5], [6], also have the same drawback.

Commercial clouds follow a pay-as-you-go model, where

the customer is billed for different operations such as

bandwidth, CPU time, and so on. Solutions that incur

excessive computation and communication costs are

unacceptable to customers.

To make remote searching applicable in a cloud location,

our previous work [7] designed a cooperate remote

searching protocol (COPS), where a proxy server, called

the combination and scattering layer (CSL), is introduced

between the users and the cloud. The CSL deployed inside

an administration has two main functionalities:

aggregating user queries and distributing search results.

Under the CSL, the computation cost incurred on the

cloud can be largely reduced, since the cloud only needs to

execute a combined inquiry once, no matter how many

users are executing queries. Furthermore, the

communication cost incurred on the cloud will also be

reduced, since data shared by the users need to be returned

only once. Most importantly, by using a series of secure

functions, COPS can protect user secrecy from the CSL,

the cloud, and other users.

In this paper, we introduce a novel concept, differential

inquiry amenities, to COPS, where the users are allowed to

personally decide how many matched data will be

returned. This is motivated by the fact that under certain

cases, there are a lot of data matching a user’s inquiry, but

the user is Interested in only a certain percentage of

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 289

matched data. To illustrate, let us assume that Alice wants

to retrieve 2 percent of the data that contain keywords ‘‘A,

B’’, and Bob wants to retrieve 20 percent of the data that

contain keywords ‘‘A, C’’. The cloud holds 1,000 data,

where fF1; . . . ; F500g and fF501; . . . ; F1000g are

described by keywords ‘‘A, B’’ and ‘‘A, C’’, respectively.

In the Ostrovsky methods, the cloud will have to return

2,000 data. In the COPS methods, the cloud will have to

return 1,000 data. In our methods, the cloud only needs to

return 200 data. Therefore, by allowing the users to

retrieve matched data on demand, the bandwidth

consumed in the cloud can be largely reduced. Motivated

by this goal, we propose a method, effective information

retrieval for graded inquiry systems (EIRGIS), in which

each user can choose the rank of his inquiry to determine

the percentage of matched data to be returned. The basic

idea of EIRGIS is to construct a secrecy-preserving mask

matrix that allows the cloud to filter out a certain

percentage of matched data before returning to the CSL.

This is not a trivial work, since the cloud needs to

correctly filter out data according to the rank of queries

without knowing anything about user secrecy. Focusing on

different design goals, we provide two extensions: the first

extension emphasizes simplicity by requiring the least

amount of modifications from the Ostrovsky methods, and

the second extension emphasizes secrecy by leaking the

least amount of information to the cloud.

Our key contributions are as follows:

1. We propose three EIRGIS methods based on the CSL

to provide a cost-efficient solution for remote

searching in cloud computing.

2. The EIRGIS methods can protect user secrecy while

providing a differential inquiry service that allows

each user to retrieve matched data on demand.

3. We provide two solutions to adjust related

parameters; one is based on the Ostrovsky methods,

and the other is based on Bloom filters.

4. Extensive experiments were performed using a

combination of simulations and real cloud

deployments to validate our methods.

The remainder of this paper is organized as follows. We

introduce related work in Section 2 before presenting

preliminaries in Section 3. We describe EIRGIS methods

in Section 4 and adjust the parameters in Section 5. After

analyzing the performance and security of the proposed

methods in Section 6, we conduct evaluations in Section 7.

Finally, we conclude this paper in Section 8.

II. RELATED WORKS

Our work aims to provide differential inquiry amenities

while protecting user secrecy from the cloud. Existing

research that is similar to ours can be found in the areas of

remote searching [3], [4], [5], [6], [7], [8], [9], [10], [11].

Unlike searchable encryption [2], [12], where the user

conducts searches on encrypted data, remote searching

performs keyword-based searches on unencrypted data.

Remote searching was first proposed in [3], [4], which

allows a server to filter streaming data without

compromising user secrecy. Their solution requires the

server to return a buffer of size Oðf logðfÞÞ when f data

match a user’s inquiry. Each file is associated with a

survival rate, which denotes the probability of this file

being successfully recovered by the user. Based on the

Paillier cryptosystem [13], the data that mismatch a

inquiry will not survive in the buffer, but the matched data

enjoy a high survival rate.

Among various extensions, [5], [6] further reduced the

communication cost from O(f log(f)) to O(f) by solving a

set of linear equations to recover f matched data. However,

their methods requires the decryption of one more buffer,

thus the computation cost is higher than the Ostrovsky

methods. Reference [8] presented an efficient decoding

mechanism which allows the recovery of data that collide

in a buffer position. Reference [9] proposed a recursive

extraction mechanism, which requires a buffer of size O

(f) when f data match a user’s inquiry. Reference [10]

proposed two new communication-optimal constructions;

one uses Reed-Solomon codes and allows for a zero-error,

and the other is based on irregular LDPC codes and allows

for lower computation cost at the server. The above

remote searching methods only support searching for OR

of keywords or AND of two sets of keywords. Reference

[11]extended the types of queries to support disjunctive

normal forms (DNF) of keywords. The main drawback of

existing remote searching methods is that both the

computation and communication costs grow linearly with

the number of users executing queries. Thus, when

applying these methods to a large-scale cloud location,

inquiring costs will be extensive.

Our previous work [7] was the first to make remote

searching techniques applicable to a cloud location.

However, [7] requires the cloud to return all of the

matched data, which may cause a waste of bandwidth

when only a small percentage of data are of interest. To

alleviate the problem, we introduced the concept of

differential inquiry amenities in [14]. The main difference

between this work and[14] is that we provide two

extensions to address different aspects of the problem, and

we conduct extensive experimentson a real cloud to verify

the effectiveness of the proposed methods.

III. BACKGROUNDS

1. System Model

The system mainly consists of three entities:1 the

combination and scattering layer (CSL), many users, and

the cloud, as shown in Fig. 1. For ease of explanation, we

only use a single CSL in this paper, but multiple CSLs can

be deployed as necessary. ACSL is deployed in an

administration that authorizes its staff to share data in the

cloud. The staff members, as the authorized users, send

their queries to the CSL, which will aggregate user queries

and send a combined

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 290

Fig 1

inquiry to the cloud. Then, the cloud processes the

combined inquiry on the file collection and returns a

buffer that contains all of matched data to the CSL, which

will distribute the search results to each user. To aggregate

sufficient queries, the administration may require the CSL

to wait for a period

2. Security Model and Design Goals

The CSL is deployed inside the security boundary of an

administration, and thus it is assumed to be trusted by all

of the users. In the supplementary file available online, we

will discuss how the EIRGIS methods work without such

an assumption. The communication channels are assumed

to be secured under existing security protocols, such as

SSL, during information transfer. With these assumptions,

as long as the CSL obeys our methods, a user cannot know

anything about other users’ interests, and thus the cloud is

the only attacker in our security model. As in existing

work [15], [16], the cloud is assumed to be honest but

curious. That is, it will obey our methods, but still wants

to know some additional information about user secrecy.

Reference [2] classified user secrecy into search secrecy

and access secrecy. In our work, user queries are classified

into multiple ranks, and thus a new kind of user secrecy,

rank secrecy, also needs to be protected against the cloud.

Rank secrecy entails hiding the rank of each user inquiry

from the cloud, i.e., the cloud provides differential inquiry

amenities without knowing which level of service is

chosen by the user. Rank secrecy can be classified into

basic level and high level, where basic level will hide the

rank of each inquiry from the cloud, and the high level

will further hide the number of ranks from the cloud. Our

design goal can be subdivided as follows:

 Cost efficiency. The users can retrieve matched data

on demand to further reduce the communication costs

incurred on the cloud.

 User secrecy. The cloud cannot know anything about

the user’s search secrecy, access secrecy, and at least

the basic level of rank secrecy.

3. Overview of the Ostrovsky Methods

We briefly introduce the Ostrovsky methods [3], [4],

which relies on a public key cryptosystem, the Paillier

cryptosystem [13]. Let Epk (m) denote the encryption of

plaintext m under public key pk. The Paillier cryptosystem

has the following homomorphism properties:

 Epk(a).Epk(b)=Epk(a+b)

 Epk(a)b=Epk(a.b).

The Paillier cryptosystem allows the performance of

certain operations, such as multiplication and

exponentiation, on cipher text directly. Given the resultant

cipher text, the user can obtain the corresponding plaintext

that processes addition and multiplication operations.

The Ostrovsky methods consist of three algorithms, the

working process of which is shown in Fig. 2a. Two

assumptions are used in their methods: first, a dictionary

that consists of the universal keywords is assumed to be

publicly available; second, the users are assumed to have

the ability to estimate the number of data that match their

queries. To better illustrate its working process, we

provide an example in the supplementary file available

online.

Step 1. The user runs the Generate Inquiry algorithm to

send an encrypted inquiry to the cloud. The inquiry is a bit

string encrypted under the user’s public key, where each

bit is an encryption of1, if the keyword in the dictionary is

chosen; otherwise, it is an encryption of 0.

Step 2. The cloud runs the Remote Search algorithm to

return an encrypted buffer to the user. Generally speaking,

the cloud processes the encrypted inquiry on every file in

the collection to generate an encrypted c-e pair, and maps

it to multiple entries of an encrypted buffer. For file Fj, the

corresponding c-e pair, denoted as (cj; ej), is generated as

follows: the bits in inquiry Q corresponding to keywords

in Fj are multiplied together to

Fig.2. Working process. (a) Ostrovsky methods. (b)

EIRGIS-Efficient methods.

Step 3. The user runs the File Recover algorithm to

recover data. The user decrypts the buffer, entry by entry,

to obtain the plaintext c-e pairs. For the entries in the

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 291

survival state, file content can be recovered by dividing

the plaintext e value by the plaintext c value.

The security of the Ostrovsky methods derives from the

semantic security of the Paillier cryptosystem. The key

technique of their methods is that the data mismatching a

user’s inquiry are processed to encrypted 0s, which have

no impact on the matched data, even if they are mapped in

the same entry. Thus, the buffer size only depends on the

number of matched data, which is much smaller than the

number of data stored in the cloud.

IV. METHODS DESCRIPTION

In this section, we will describe the original EIQR

methods and its two extensions. To distinguish the three

EIRGIS methods, we name the original EIRGIS methods

as EIRGIS Efficient the first extension as EIRGIS-Simple,

and the second extension as EIRGIS-Secrecy, in this

paper.

The basic idea of EIQR-Efficient is to construct a secrecy-

preserving mask matrix with which the cloud can filter out

a certain percentage of matched data before mapping them

to a buffer. As proven in the Ostrovsky methods, the file

survival rate is determined by the buffer size and mapping

times. Therefore, the basic idea of two extensions is that,

for each rank i 2 f0; . . . ; rg, the CSL adjusts the buffer

size i and the mapping times i to make the file survival

rate qi approach 1 i=r. To better illustrate the working

process of the EIRGIS methods, we provide examples in

the supplementary file available online.

A. The EIRGIS-Efficient Methods

Before illustrating EIQR-Efficient, two fundamental

problems should be resolved:

Firstly, we should determine the relationship between

inquiry rank and the percentage of matched data to be

returned. Suppose that queries are classified into 0 r ranks.

Rank-0 queries have the highest rank and Rank-r queries

have the lowest rank. In this paper, we simply determine

this relationship by allowing Rank-i queries to retrieve ð1

i=rÞ percent of matched data. Therefore, Rank-0 queries

can retrieve 100 percent of matched data, and Rank-r

queries cannot retrieve any data.

Secondly, we should determine which matched data will

be returned and which will not. In this paper, we simply

determine the probability of a file being returned by the

highest rank of queries matching this file. Specifically, we

first rank each keyword by the highest rank of queries

choosing it, and then rank each file by the highest rank of

its keywords. If the file rank is i, then the probability of

being filtered out is i=r. Therefore, Rank-0 data will be

mapped into a buffer with probability 1, and Rank-r data

will not be mapped at all. Since unneeded data have been

filtered out before mapping, the mapped data should

survive in the buffer with probability 1. In Section 5, we

will illustrate how to adjust the buffer size and mapping

times to achieve this goal.

EIRGIS-Efficient mainly consists of four algorithms, with

its working process being shown in Fig. 2b. Since

algorithms Inquiries and Result Divide are easily

understood, we only provide the details of algorithms

Matrix- Construct and File Filter in Alg. 1.

Step 1. The user runs the Inquiry Gen algorithm to send

keywords and the rank of the inquiry to the CSL. Since the

CSL is assumed to be a trusted third party, this inquiry

will be sent without encryption.

Step 2. After aggregating enough user queries, the CSL

runs the Matrix Construct algorithm to send a mask matrix

to the cloud. The mask matrix M is a d-row and r-column

matrix, where d is the number of keywords in the

dictionary, and r is the lowest inquiry rank. Let M½i; j

denote the element in the

i-th row and the j-th column, and let l be the highest rank

of queries that choose the i-th keyword Dic½I in the

dictionary. M is constructed as follows: for the i-th row of

M that corresponds to set to 0, then each element is

encrypted under the CSL’s public key pk. For the rows

that correspond to Rank-l keywords, the CSL sets the first

r _ l elements, rather than random r _ l elements, to 1.

There as on is to ensure that, given any Rank-l file Fj,

when we choose a random number k, the probability of all

of the k-th elements of the rows that correspond Fj’s

keywords being0 is l=r, which is determined by the

highest rank of Fj’s keywords.

Step 3. The cloud runs the File Filter algorithm to return a

buffer that contains a certain percentage of matched data

to the CSL. Specifically, the cloud multiplies the k-th

elements of the rows that correspond to Fj’s keywords

together ro form cj, where k ¼ j mod r. Then, it powers

jFjj to cj to obtain ej, and maps the c-repair into multiple

entries of a buffer, as in the Ostrovsky methods. Note that,

with Step 2, we can make sure that, for a Rank-l file Fj,

the probability of cj being 0 is l=r, and thus the probability

of Fj being filtered out is l=r

Step 4. The CSL runs the Result Divide algorithm to

distribute search results to each user. File contents are

recovered as the file Recover algorithm in the Ostrovsky

methods. To allow the CSL to distribute data correctly,

were quire the cloud to attach keywords to the file content.

Thus, the CSL can find out all of the data that match users’

queries by executing keyword searches.

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 292

B. The EIRGIS-Simple Methods

The working process of EIRGIS-Simple is similar to Fig.

2b.Themain differences lie in the Matrix Construct and

File Filter algorithms (see Alg. 2). Intuitively, given

queries that are classified into 0 _ r ranks, CSL sends r

combined queries, denoted as Q0; . . .;Qr_1, to the cloud,

each with a different rank. Specifically, for Qi, the CSL

sets the j-th bit to an encryption of 1 if the j-th keyword

Dic½j_ in the dictionary is chosen by at least one Rank-i

inquiry. The cloud then will generate r buffers, denoted as

B0; . . . ;Br_1, each with a different file survival rate.

Specifically, for Bi, the CSL adjusts the mapping time _i

and the buffer size _i so that the survival rate of data in Bi

is qi ¼ 1 _ i=r, where0 _ i _ r _ 1.

The main drawback of EIRGIS-simple is that it returns

redundant data when there is data satisfying more than one

ranked inquiry. For example, if Fi is of interest by Rank-

0and Rank-1 queries, it will be returned twice (in Rank-

0buffer and Rank-1 buffer, respectively), which wastes the

network bandwidth. Therefore, the best case scenario is

when there are no data of interest to different rank

equerries, and the worst case scenario is when queries of

different ranks inquiry the same data.

C. The EIRGIS-Secrecy Methods

The working process of EIRGIS-Secrecy is similar to Fig.

2b.The main differences lie in the Matrix Construct and

File Filter algorithms (see Alg. 3). Intuitively, EIRGIS-

Secrecy adopts one buffer, with different mapping times

for data of different ranks. Let _i denote the mapping

times for a Rank-I inquiry, and let l be the highest rank of

queries that choose the i-th keyword Dic½i_ in the

dictionary. The mask matrix M is a d-row and m-column

matrix, where d is the number of keywords in the

dictionary, and m ¼ max _i. The Matrix Construct

algorithm constructs M in the following way: for the i-th

row of M that corresponds to, the CSL sets and to 0, and

then encrypts each element under its public key. Note that

for a row that corresponds to a Rank-l keyword, the CSL

sets the first_l elements, rather than random _l elements, to

1. The reason is to ensure that, given any Rank-l file, when

we multiply the rows that correspond to file keywords

together in a element-by-element way, the resulting row

contains _l elements whose values are larger than 0.

In the File Filter algorithm, for each file Fj, the cloud

multiplies the rows that correspond to file keywords,

element by element, to form a resulting row. Each element

in the resulting row corresponds to a c value. Letcj;1; . . . ;

cj;m denote Fj’s c values, where m ¼ max _i. The cloud

powers the file content jFjj to cj;k to form ej;k, and maps

ðcj;k; ej;kÞ to the buffer once, where 1 _ k _ m. Note that

with the Matrix Construct algorithm, we can make sure

that, for a Rank-l file, the number of c values larger than 0

is Therefore, although m c-e pairs will be mapped, only of

them will take effect, which is equal to mapping c-e pairs

times to a buffer.

V. ANALYSES

A. Security Analysis

We will show that EIRGIS methods can provide search

secrecy, access secrecy, and rank secrecy as follows.

1. Search Secrecy:

In the three methods, the combined inquiry sent to the

cloud is encrypted under the CSL’s public key with the

Paillier cryptosystem. The inquiry is a matrix of encrypted

0s and 1s. The Paillier cryptosystem is semantically

secure, and the cipher text of every 1 or 0 is different from

other 1s or 0s. Therefore, the cloud cannot deduce what

each user is searching for from the encrypted inquiry.

2. Access Secrecy:

In the three methods, the cloud processes the encrypted

inquiry on each file in a collection, and maps the

processing result into a buffer, which is encrypted with the

CSL’s public key. The cloud conducts this process for all

data in the same way. Therefore, the cloud cannot know

which data are actually returned from the encrypted buffer.

3. Rank Secrecy:

In EIRGIS-Simple, the messages from the CSL to the

cloud are r encrypted queries, the buffer size, and the

mapping times, where r is the information, which we leak

more than [3]. Given r, the cloud only knows the number

of inquiry ranks without knowing how many users are in

each rank, nor which users are in which ranks.

Therefore, EIRGIS Simple can protect the basic level of

rank secrecy for a user. In EIRGIS-Secrecy, the message

from the CSL to the cloud is a d-row and m-column mask

matrix, where d is the number of keywords in the

dictionary, and m ¼ max i is the maximal value of

mapping times.

Here, no extra information is leaked more than [3].

Therefore, EIRGIS-Secrecy provides a high level of user

rank secrecy. In EIRGIS-Efficient, the message from the

CSL to the cloud is a d-row and r column mask matrix,

where d is the number of keywords in the dictionary, and r

is the lowest rank of user queries.

Here, r is the information that we leak more than [3].

Therefore, EIRGIS-Efficient can protect the basic level of

rank secrecy

http://www.ijireeice.com/

 ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
And

National Conference on Advanced Innovation in Engineering and Technology (NCAIET-2015)

Alva’s Institute of Engineering and Technology, Moodbidri

Vol. 3, Special Issue 1, April 2015

Copyright to IJIREEICE DOI 10.17148/IJIREEICE 293

5.2 Performance Analysis

We compare the performance between No Rank and the

three EIRGIS methods under different parameter settings

(see Table 1). In No Rank, the CSL only combines user

queries, but does not provide differential inquiry

amenities. In the supplementary file available online, we

also provide a comparison of performance between No

Rank and the work in [3], [6]. Suppose that queries are

classified into 0 r ranks, t data stored in the cloud whose

keywords constitute a dictionary of size d, fi data

matching Rank-I queries, and f0 i data matching Rank-i

queries but mismatching higher ranked queries.

Furthermore, in No Rank and EIRGIS-Efficient, the

threshold file survival rate p0 is set to; in EIRGIS-Simple

and EIRGIS-Secrecy, p0 i is set to i=r þ

B. Computational Cost

We only consider the cost of the exponential operation,

which is the most expensive. In both parameter settings,

the results are the same. In EIRGIS-Simple, the

computational cost is r times more than No Rank since, for

each ranked inquiry, the cloud needs to process it on the

file collection once. In EIRGIS-Secrecy, the

computational cost is maxiÞ times more than No Rank

since, for each file, the cloud needs to execute maxiÞ

exponentiations with the matrix elements. In EIRGIS-

Efficient, the computational cost is much the same as in

No Rank, since the cloud needs to execute exponentiation

once for each file.

VI. CONCLUSION
In this paper, we proposed three EIRGIS methods based

on an CSL to provide differential inquiry amenities while

protecting user secrecy. By using our methods, a user can

retrieve different percentages of matched data by

specifying queries of different ranks. By further reducing

the communication cost incurred on the cloud, the EIRGIS

methods make the remote searching technique more

applicable to a cost-efficient cloud envir onment.

However, in the EIRGIS methods, we simply determine

the rank of each file by the highest rank of queries it

matches. For our future work, we will try to design a

flexible ranking mechanism for the EIRGIS methods.

REFERENCES
[1] P. Mell and T. Grance, ‘‘The NIST Definition of Cloud Computing

(Draft),’’ in NIST Special Publication. Gaithersburg, MD, USA:
National Institute of Standards and Technology, 2011.

[2] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ‘‘Searchable

Symmetric Encryption: Improved Definitions and Efficient
Constructions,’’ in Proc. ACM CCS, 2006, pp. 79-88.

[3] R. Ostrovsky and W. Skeith, ‘‘Remote Searching on Streaming

Data,’’ in Proc. CRYPTO, 2005, pp. 233-240.
[4] R. Ostrovsky and W. Skeith, ‘‘Remote Searching on Streaming

Data,’’ J. Cryptol., vol. 20, no. 4, pp. 397-430, Oct. 2007.

[5] J. Bethencourt, D. Song, and B. Waters, ‘‘New Constructions and
Practical Applications for Remote Stream Searching,’’ in Proc.

IEEE SP, 2006, pp. 1-6.

[6] J. Bethencourt, D. Song, and B. Waters, ‘‘New Techniques for
Remote Stream Searching,’’ ACM Trans. Inf. Syst. Security, vol.

12, no. 3, p. 16, Jan. 2009.

[7] Q. Liu, C. Tan, J. Wu, and G. Wang, ‘‘Cooperative Remote
Searching in Clouds,’’ J. Parallel Distrib.Comput., vol. 72, no. 8,

pp. 1019-1031, Aug. 2012.

[8] G. Danezis and C. Diaz, ‘‘Improving the Decoding Efficiency of
Remote Search,’’ Int’l Assoc. Cryptol. Res., IACR Eprint Archive

No. 024, SchlossDagstuhl, Germany, 2006.

[9] G. Danezis and C. Diaz, ‘‘Space-Efficient Remote Search with
Applications to Rateless Codes,’’ in Proc. Financial Cryptogr. Data

Security, 2007, pp. 148-162.

[10] M. Finiasz and K. Ramchandran, ‘‘Remote Stream Search at the
Same Communication Cost as a Regular Search: Role of LDPC

Codes,’’ in Proc. IEEE ISIT, 2012, pp. 2556-2560.

[11] X. Yi and E. Bertino, ‘‘Remote Searching for Single and
Conjunctive Keywords on Streaming Data,’’ in Proc. ACM

WorkshopSecrecy Electron. Soc., 2011, pp. 153-158.
[12] B. Hore, E.-C. Chang, M.H. Diallo, and S. Mehrotra, ‘‘Indexing

Encrypted Documents for Supporting Efficient Keyword Search,’’

in Proc. Secure Data Manage., 2012, pp. 93-110.
[13] P. Paillier, ‘‘Public-Key Cryptosystems Based on Composite

Degree Residuosity Classes,’’ in Proc. EUROCRYPT, 1999, pp.

223-238.
[14] Q. Liu, C.C. Tan, J. Wu, and G. Wang, ‘‘Efficient Information

Retrieval for Ranked Queries in Cost-Effective Cloud Locations,’’

in Proc. IEEE INFOCOM, 2012, pp. 2581-2585.
[15] S.Yu,C. Wang,K.Ren, andW. Lou, ‘‘Achieving Secure, Scalable,

Fine-Grained Data Access Control in Cloud Computing,’’ in Proc.

IEEE INFOCOM, 2010, pp. 1-9.

[16] G. Wang, Q. Liu, J. Wu, and M. Guo, ‘‘Hierarchical Attribute-

Based Encryption and Scalable User Revocation for Sharing Data

in Cloud Servers,’’ Comput. Security, vol. 30, no. 5, pp. 320-331,
July 2011.

[17] M. Mitzenmacher, ‘‘Compressed Bloom Filters,’’ IEEE/ACM

Trans. Netw., vol. 10, no. 5, pp. 604-612, Oct. 2002.
[18] D. Guo, J. Wu, H. Chen, and X. Luo, ‘‘Theory and Network

Applications of Dynamic Bloom Filters,’’ in Proc. IEEE

INFOCOM, 2006, pp. 1-12.

BIOGRAPHY

Mr.Santhosh C Deshpande is currenty

studying M.Tech in Shree Devi Institute of

Technology under VTU in Computer

Science branch. He has completed

Engineering in SKSVMACET, Laxmeshwar

under VTU.

http://www.ijireeice.com/

	INTRODUCTION

