
ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 1, Issue 5, August 2013

Copyright to IJIREEICE www.ijireeice.com 184

VLSI Implementation of Pipelined FIR Filter

Aarti Sharma
1
, Sanjay Kumar

2

Department of ECE, Thapar University, Patiala, Punjab, India
1

Department of ECE, Thapar University, Patiala, Punjab, India
2

Abstract: This paper proposes to optimize the system speed with minimal cost and hardware by making use of pipelining

approach in the designing of FIR filter. The non- pipelined and pipelined FIR filter has been designed using Hardware

Description Language (HDL) and a comparative study of both the filter designs using Radix-4 & Radix-8 has been done.

The design synthesis and power analysis are carried out using Xilinx ISE 13.1and Synopsis tool, respectively. The concept

of pipelining has been incorporated that results in reducing the delay of the FIR filter, thereby enhancing the speed and

reducing the power dissipation as compared to the non-pipelined techniques. Simulation validates the results.

Keywords: FIR filter, Booth multiplier, Pipelining, Non-pipelining, Kaiser Window.

I. INTRODUCTION

In signal processing, the filter is used to remove some

unwanted component or feature from a signal thereby

improving the quality of signal. It alters the amplitude and/

or phase characteristics of a signal in a desired manner with

respect to frequency. The primary function of filter are – to

confine a signal into a prescribed frequency band, to

decompose a signal into two or more sub-bands, to modify

the frequency spectrum of a signal and to model the input-

output relationship of a system. Filters are extensively used

in signal processing and communication system in

applications like noise reduction, echo cancellation, image

enchancement, speech and waveform synthesis etc.

There are two main kind of filter: analog and digital filter.

Analog filter has analog signal at both its input & output and

are made up from components such as resistors, capacitors

and op amps to produce the required filtering effect. Such

filters are fast and simple to realize but are little stable,

sensitive to temperature variations and expensive to realize

in large amounts. Digital filter on the other hand uses digital

processor to perform numerical calculations on sampled

values of the signal and eliminate the problems associated

with their classical analog counterparts, thus are preferably

used in place of analog filter [1]. Broadly, digital filters are

classified as: Finite Impulse Response (FIR) and Infinite

Impulse Response (IIR) filter. FIR filters have linear phase,

stability, fewer finite precision errors, and efficient

implementation hence preferred over IIR filter [2]. This

paper discusses the design and implementation of a non-

pipelined and pipelined FIR filter using both the encoding

schemes for multipliers – Radix-4 and Radix-8.

 The remainder of the paper proceeds as follows:

Section II describes the brief summary of FIR filter theory

and section III presents the algorithm used to design the

multiplier which is the basic block of FIR filter structure.

Section IV briefly explains FIR filter design and Section V

describes the technique used to optimize the FIR filters.

Synthesis results and simulation results are presented in

section VI and section VII respectively. Concluding remarks

are given in the final section.

II. FINITE IMPULSE RESPONSE FILTER

Finite impulse response (FIR) filters are a class of digital

filters that have a finite impulse response and are among one

of the primary types of filter used in DSP and

communication system [3]. They do not have any feedback

and therefore if excited by impulse response, the ouput will

invariably become zero. The input- output relationship of

FIR filter is given by (1)

 𝑦 𝑛 = 𝑝(𝑘) 𝑥(𝑛 − 𝑘𝑁−1
𝑘=0) (1)

where, p(k), k = 0,1,2,3……N-1 are the impulse response

coefficients of the filter. N is the filter length that is number

of coefficients.

III. BOOTH MULTIPLIER

Multipliers are the basic building block in DSP,

microprocessors and other applications. The system’s

performance is entirely dependent upon the multipliers

because they have large area, long latency and consume

considerable power hence there is a need to design high

speed, low power consumption, regular and less area

multipliers. The speed of the multipliers can be increased by

reducing the number of partial products. Parallel multipliers

are fastest among all multipliers. Booth multipliers are the

parallel multipliers that operate on signed operands in two’s

complement form and have high performance, low power

consumption and does not suffer from bad regularity [5].

This paper presents an efficient implementation of high

speed parallel multipliers using both the encoding schemes

http://www.ijireeice.com/

ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 1, Issue 5, August 2013

Copyright to IJIREEICE www.ijireeice.com 185

Radix–4 and Radix-8 which are further used in the designing

of FIR filter. Radix-4 and Radix-8 reduces the number of

partial products to n/2 and n/3 respectively where n is the

length of the multiplier. The number of partial products can

be further reduced by using higher radices but the

disadvantage is that we need to generate more multiples of

multiplicand. Radix-4 booth recoding encodes the

multipliers bits into [-2, 2]. Multiplier bits are grouped into

the block of three such that each block overlaps the previous

block by one bit. The overlapping keeps track off what was

happened in the last block as the MSB of the block act as

sign bit. For each group of three bits a partial product is

generated according to the recoding scheme as shown in

Table I. The same procedure is true for radix-8 but the

difference is here the multipliers bits are grouped into block

of four bits and encodes the multiplier bits into [-4,4]

according to the encoding table as shown in Table II. Finally

a regular carry select adder has been used to add all the

partial products [6].

Table I Radix-4 Recoding Scheme

Multiplier Bits Recoding Operation

on Multiplicand, X
𝒀𝒊+1 𝒀𝒊 𝒀𝒊−𝟏

0 0 0 0

0 0 1 +1X

0 1 0 +1X

0 1 1 +2X

1 0 0 -2X

1 0 1 -1X

1 1 0 -1X

1 1 1 0

Table II Radix-8 Recoding Scheme

Multiplier Bits Recoding

Operation on

Multiplicand,

X

𝒀𝒊+2 𝒀𝒊+1 𝒀𝒊 𝒀𝒊−𝟏

0 0 0 0 0

0 0 0 1 +1X

0 0 1 0 +1X

0 0 1 1 +2X

0 1 0 0 +2X

0 1 0 1 +3X

0 1 1 0 +3X

0 1 1 1 +4X

1 0 0 0 -4X

1 0 0 1 -3X

1 0 1 0 -3X

1 0 1 1 -2X

1 1 0 0 -2X

1 1 0 1 -1X

1 1 1 0 -1X

1 1 1 1 0

Multiply by zero means the multiplicand is multiplied by

“0”. Multiply by “1” means the product still remains the

same as the multiplicand value. Multiply by “-1” means that

the product is the two’s complement form of the

multiplicand. Multiply by “-2” is to shift left one bit the

two’s complement of the multiplicand value and multiply by

“2” means just shift left the multiplicand by one place.

Multiplying the multiplicand by “3” is equivalent to (2X+X)

addition of multiplicand and left shifted multiplicand by one

digit. Multiply by “-3” means addition of two’s complement

of multiplicand and shift left one bit the two’s compliment

of the multiplicand value. Multiply by “4” means shift left

the multiplicand by two place. Multiply by “-4” means shift

left the two’s complement of multiplicand by two places.

IV. FIR FILTER DESIGN

In this paper, an FIR filter has been designed using Kaiser

window technique with the help of MATLAB Filter Design

and Analysis tool box (FDA) as shown in Fig. 1 and the

coefficients are directly imported to the VHDL file. The

input, output and coefficients are represented in fixed point

notation and are quantized to 16 bits. The Kaiser window

has a adjustable parameter α which optimize the main-lobe

width and direct control over stop-band attenuation can be

achieved thereby sustaining optimality and flexibility. The

direct form realization of FIR filter and magnitude response

are shown in Fig. 2 and Fig. 3 respectively. The design

parameters or specification are as follows

1. Stop-band attenuation = 40 dB

2. Pass-band ripple = 0.01 dB

3. Transition width = 500 Hz

4. Sampling frequency = 10 kHz

5. Ideal cut-off frequency = 1200 Hz

Fig. 1 FIR digital low-pass filter parameters.

http://www.ijireeice.com/

ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 1, Issue 5, August 2013

Copyright to IJIREEICE www.ijireeice.com 186

𝑻𝑴 + 𝟕𝟎𝑻𝑨

Fig. 2 Seventy-one tap non-pipelined FIR structure.

Fig. 3 FIR digital low-pass filter magnitude response

V. PIPELINING

Pipelining is an implementation technique in which multiple

instructions are overlapped in execution and results in speed

enhancement for the critical path in most of the DSP system,

microprocessors etc. It can either increase the clock speed or

reduce the power consumption at the same speed in a DSP

system. The total execution time for each individual

instruction is not altered by pipelining. It does not accelerate

instruction execution time but it does accelerate program

execution time by increasing the number of instruction

finished per cycle [2].

In pipelining any operation along the critical path is broken

into smaller and quicker operation with registers between the

levels in order to get a smaller critical path or increase in the

operating frequency which leads to higher throughput [7].

The pipelined structure of the proposed FIR filter design is

shown in Fig. 4.

𝑻𝑴 + 𝑻𝑨

Fig. 4 Seventy-one tap pipelined FIR structure.

Due to pipelining the critical path has been reduced from

𝑇𝑀 + 70𝑇𝐴 to 𝑇𝑀 + 𝑇𝐴 where, 𝑇𝑀 is the time required for

multiplication operation and 𝑇𝐴 is the time required for

addition operation.

VI. SYNTHESIS RESULTS

Table III Synthesis Report of Non-pipelined FIR Filter.

LOGIC

ULTILISATION

NON-

PIPELINED

FIR FILTER

PIPELINED

FIR FILTER

Number of Slice

Flip Flop

1,186/29,504 2,298/29,504

Four Input LUTs 14,665/29,504 8,698/29,504

Number of Occupied

Slices

8,393/14,752 5.004/14,752

Total Number of

Four Input Slices

14,917/29504 8,906/29,504

Number Of Bonded

IOBs

51/250 51/250

Average Fanout 2.55 2.75

Memory Usuage

(Kb)

891980 900608

Table IV Synthesis report of pipelined FIR filter

LOGIC

ULTILISATION

NON-

PIPELINED

FIR

FILTER

PIPELINED

FIR

FILTER

Number of Slice Flip

Flop

1,186/29,504 2,299/29,504

Four Input LUTs 19,687/29,504 11,412/29,504

Number of Occupied

Slices

11.304/14,752 6,714/14,752

Total Number of

Four Input Slices

20,037/29504 11,716/29,504

Number of Bonded

IOBs

51/250 51/250

Average Fanout 2.65 2.78

Memory Usuage(Kb) 1076364 1080268

Fig.5 Top Level Circuit Diagram of Low-pass Filter

http://www.ijireeice.com/

ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 1, Issue 5, August 2013

Copyright to IJIREEICE www.ijireeice.com 187

Fig. 6 Delay and Power analysis of FIR filter using Radix-4 multiplier.

Fig. 7 Delay and Power analysis of FIR filter using Radix-8 multiplier.

VII. Simulation Results

Fig. 8 Simulation of non-pipelined FIR filter using Radix-4 multiplier.

Fig. 9 Simulation of pipelined FIR filter using Radix-4 multiplier.

Fig. 10 Simulation of non-pipelined FIR filter using Radix-8

Fig. 11 Simulation of Pipelined FIR Filter Using Radix-8

VIII. CONCLUSIONS

The design of non-pipelined and pipelined FIR filter using

both the encoding schemes – Radix-4 and Radix-8 has been

accomplished via Hardware Description Language and

http://www.ijireeice.com/

ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 1, Issue 5, August 2013

Copyright to IJIREEICE www.ijireeice.com 188

synthesized on XILINX ISE Software (Xilinx ISE 13.1

version) for Spartan 3E FGPA (Field Gate Programmable

Array) family (XC3S1600E). Synthesis reports are shown in

Table III and Table IV. The Fig. 6 demonstrates that the

pipelined technique enhances the speed and reduces delay

from 157.413 ns to 26.892 ns i.e., 82.9 % in pipelined FIR

filter designed using Radix-4 multiplier as compared to non-

pipelined technique. On the other hand, delay has been

reduced from 149.386 ns to 26.934 ns i.e. 81.97 % in

pipelined FIR filter designed using Radix-8 multiplier as

compared to non-pipelined technique as shown in Fig. 7.

Power analysis shows that the dynamic power has been

reduced by the same amount from 106.7415 mW to 60.3062

mW i.e., 43.50 % due to pipelining technique in both the

designing of FIR filters as shown in Fig. 6 and Fig. 7.

Simulation waveforms are shown in Fig. 8 – Fig. 11. The top

RTL level symbol of proposed FIR filter is shown in Fig. 5.

As all the structures are implemented using VHDL language,

they can be ported to any FPGA family.

ACKNOWLEDGEMENT

The author would like to thank Mr. Sanjay Kumar for his

complete guidance and entire VLSI department for their

support.

REFERENCES

[1]. N. Parijatha, K.R.A. Hinduja and A.C. Shaker, “FPGA Optimized Low

Power and High Speed FIR Filter Structures For DSP Applications”,

International Journal of Engineering Research & Technology, vol. 2, pp. 1-

5, Mar. 2013.

[2]. R. Kaur, A. Raman, Member, IACSIT, H. Singh and J. Malhotra,
“Design and Implementation of High Speed IIR and FIR Filter using

Pipelining”, International Journal of Computer Theory and Engineering,

vol. 3, pp. 292-295, Apr. 2011.
[3]. B. Rashidi, B. Rashidi and M. Pourormazd, “Design and

Implementation of Low Power Digital FIR Filter based on low power

multipliers and adders on Xilinx FPGA”, International Conference on
Electronics Computer Technology, 2011, pp.18-22.

[4]. E. Ifeachor and B. Jervis, “Finite impulse response (FIR) filter design”

in Digital Signal Processing: A Practical Approach, 2nd ed., D. Kindersley,
Ed. South Asia: Pearson Education, 2002, pp. 342-440.

[5]. V.V. Haibatpure, P.S. Kasliwal and B.P. Patil, “Performance

Evaluation of Proposed Vedic Multiplier In Microwind”, International
Journal of Communication Engineering Applications, vol. 03, pp. 498-502,

Jul. 2012.

[6]. P. R. Aparna and N. Thomas, “Design and Implementation of a High

Performance Multiplier using HDL”, International Conference on

Computing, Communication and Application, 2012, pp. 1-5.

http://www.ijireeice.com/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6175416

