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Abstract: This paper proposes a new control method for charging management of Electric Vehicles (EVs). The goals 

of the proposed control method are to reduce EV integration challenges, such as over-currents and under-voltages, and 

also improve the power factor. The proposed method controls the charging rates of the chargers in the distribution 

systems using cooperative control in order to prevent the network from under-voltages and overcurrents. The proposed 

algorithm is tested on the IEEE 33-Node Test Feeder and the simulation studies are carried out using OpenDSS and 

MATLAB. The pros and cons of the proposed method are presented and compared to the other EV charging methods. 
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I. INTRODUCTION 

 

The connection of EVs without any management and 

control system leads to issues such as over-currents and 

under-voltages in distribution systems ‎[1]. As ‎[2] suggests, 

the chargers with adjustable charging rates along with 

sophisticated charging management methods provide 

solutions to the EV connection problems. According to 

communication requirements, charging management 

methods can be divided into two groups as: 1) centralized 

methods in that a control centre optimizes and manages 

EV charging based on the received data from EVs. 2) 

Decentralized methods in that EVs are managed without a 

control centre and the intelligence is dispersed throughout 

the network ‎[3]. 

The centralized methods provide more optimum outcomes 

for EV charging management in comparison with 

decentralized methods. However, a complicated 

communication infrastructure and considerable 

computational capability is needed ‎[4], ‎[5]. Decentralized 

control methods provide self-organizability and scalability 

by low communications and computational requirements 

‎[6]. Thus, decentralized methods seems to be more 

advantageous for EV charging management in close future 

using the available communication infrastructures‎. 

In ‎[7], a decentralized method based on game theory is 

proposed for minimization of charging costs. However, the 

electrical constraints are not considered. In ‎[8], a 

distributed method based on the Lagrangian 

decomposition is proposed for arrangement of EV 

charging patterns and also compensation of reactive 

power. However, this method needs a coordinator to find 

the optimal solution ‎[9]. In ‎[10], every EV sends their 

demand to the aggregator. Them, the aggregator calculates 

the optimum solution by means of convex relaxation 

method and sends the result to each EV in the system ‎[11]. 

Then, each EV makes decision to charge or to be idle. In 

‎‎[12], the system operator controls the number of charging 

EVs and informs the EVs in the system through  

 

 

communications. In ‎‎[13], a real-time decentralized 

algorithm is proposed for management of the contributions 

of local solar panels for charging the EVs. In ‎‎[14], using 

Alternating Direction Method of Multipliers (ADMM), 

iteratively the most optimum solution for EV charging is 

found. However, a huge amount of data should be 

transferred and a capable communication infrastructure is 

required. In ‎, a myopic method is proposed based on the 

present system conditions. Every single EV operates in 

either charging or idle mode according to the received data 

from the aggregator and its SOC to reduce the negative 

effects of EVs on load deviation. An experimental testbed 

is described in ‎‎[15] where voltage and current 

measurements are sent to the aggregator by means of 

power line carriers (PLCs), a thorough definition about 

PLC systems is proposed in ‎[16]. If any measurement 

passes a predefined threshold, the aggregator disconnects 

some of the EVs from the distribution system. In ‎‎[17], a 

cooperative control-based method is proposed for 

minimization of voltage drops and also for balancing the 

demand and generation of distributed generations. In ‎[2], a 

new method for EV charging is proposed that prevents the 

technical parameters of the power system from being 

violated and also reduces the charging costs using sparse 

and low cost communications. The method does not 

require price or load prediction, which makes it more 

applicable. 

In this paper, we propose a decentralized charging 

management method for EVs. The proposed method 

calculated the optimal solution and then sends the 

charging rates to each EV. The EV controller then selects 

either charging, discharging, or idle operating mode. 

During the charging mode, the local controller adjusts the 

charging rates utilizing the distributed cooperative control 

to retain the voltages and currents in the normal condition. 

The paper is organized as follows: The problem is stated 

in Section 2. In Section 3 describes the proposed method. 
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In Section 3, the case study and results are provided, 

discussed, and compared. In Section 4, conclusion is 

presented. 

 

II. PROPOSED METHOD 

 

A. Problem Statement 

When each EV reaches the charging location, it is plugged 

in immediately and charged with a variable power. The 

electric motor used as propulsion in EV is usually of 

induction type or high-efficiency permanent-magnet type 

‎[18],‎[19]. If a large number of EVs are put into charge in a 

specific part of the power system, a large power demand is 

forced on the power network in peak hours of the day ‎[20]. 

If a fault happens, we can use current limiters to protect 

EVs against overcurrent faults ‎[21]. In smart grids, an EV 

control centre is provided to control the charging rates of 

EVs. When the network is overloaded, the centre prevents 

some EVs from being charged or let them charge at lower 

rate than their rated value. This helps shifting the peak 

load from highly loaded hours to lightly loaded hours, and 

consequently, makes the load profile smoother. 

 

B. The Models for Loads and EVs 

For evaluation of the effect of EVs charging on the 

network, the base load profile and EV charging profile are 

required to be found, and then, these two profiles must be 

added. The added profile will be used in load flow 

calculation and the proposed objective function. In this 

section at first a brief description of the base load is 

presented, and then a comprehensive model for EV 

charging is presented. 

 

C. Load Model 

In [8], the yearly peak load data for all the substations are 

given. In order to analyse the system, it is needed to have 

system data for hours of a day. In order to create base load 

profile, the test system from reliability test system-1996 

(IEEE RTS-96) is deployed [8]. What  is  important  about  

this  test  system  is  that it  includes  a  load  factor which 

defines the  relationship between the average  demand  in  

a  given  interval  and  the  peak  demand  in  that interval. 

IEEE RTS-96 network topology and the load factors for 

weekly peak load in percent of annual peak, daily  peak  

load in  percent  of weekly  peak  and  hourly  peak  load  

in percent  of  daily peak are given in [13]. A research has 

been conducted to investigate the effect of the load of data 

centre on supply management of solar energy [22]. 

Thus, according to above explanations, base load profile 

for every hour, day and week of the year and for every 

feeder are calculated by the following equation: 

( ,w,d,h) LF(w) (d) (h) MD( )D n LF LF n     (1) 

 

where LF(w), LF(d), LF(h) and MD(n) are load factor in 

week w of the year, load factor in day d of the week, load 

factor in day d of the week, and annual peak demand in 

feeder i. Using Eq. (1), demand at Feeder i, in week w of 

the year, day d of the week and hour h of the day can be 

calculated. 

 

D. Probabilistic EV Charging Model 

In this section, the calculation of load profile produced by 

EV charging is made. Thus a mathematic probabilistic 

model for EV charging is developed. 

According to [12] and [23]all EVs can be divided into 4 

classes namely: micro car, economy car, mid-size car and 

light truck/SUV. Each EV class is represented by a 

probabilistic parameter. The number of EVs in each class 

is a random variable with mean of Pen(c)which in each 

class is equal to 0.2, 0.3, 0.3 and 0.2, respectively. In order 

to determine every class EV number normal distribution is 

taken into account. Therefore, in each class, mean and 

standard deviation are written as follows: 

   c c
PHEVN Pen  

 (2) 

   c c
p   

 (3) 

 

In which PHEVN
 is equal to total EV number in the 

region and αp  is equal to 0.01 [11]. 

The second parameter which is modelled is EV battery 

capacity (CBat
(c,v)

). Based on [8], EVs have battery with 

normal distribution with mean and standard deviation 

values corresponding to Eq. (4) and (5). 

      

2Bat

c c
Bat Batc

C

MinC MaxC





 (4) 

      

2Bat

c c
Bat Batc

C

MinC MaxC





 (5) 

 

In which the values of MinCBat
c  and MaxCBat

c  are equal to 

(8, 17, 10, 19) and (12, 14, 21, 23) for four classes 

respectively [10]. 

Another important parameter in EV charge modelling is 

daily travelled distance (Trd
(v,d)

) by each EV. According to 

[12] daily travelled distance distribution can be expressed 

as a normal distribution with mean value and standard 

deviation value of (σm = 5miles = 54km). An important 

parameter related to daily traveled distance is grid energy 

required per km distance traveled (Ek
(c)

). According to 

[10], Ek
(c)

can be finely approximated to 0.19, 0.2, 0.22, and 

0.24 for four classes, respectively. 
 

The next important parameter for EV charging in home, is 

the required grid energy (EG
(v,c,d)

) and state of charge 

(SOC). When EVs leave and then return home, they may 

consume fuel or not, depending on how much distance 

they travel during the day.  Moreover, in account for not 

taking any damage during the charging, it is assumed that 

EVs have an allowable SOC limit 10% and 80%. Eq. (6), 
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(7) shows relationship between SOC of arrival time and 

departure time with the fuel and the required grid energy. 
(c)(v,d)

(v,c,d)(v,c,d) (v,c,d)

(v,c)

(Tr E )d k
a pd

Bat

SOC SOC Fuel
C


  

 (6) 
(v,c,d)

(v,c,d 1) (v,c,d)

(v,c)

G
d a

Bat

E
SOC SOC

C

  

 (7) 
 

Where 
(v,c,d)

aSOC
 and 

(v,c,d)
d

SOC
are SOC of arrival time 

and SOC of departure time to home, respectively. Since it 

is assumed that vehicles charged fully at home in the 

previous day, 
(v,c,d)
d

SOC
is set to 0.8. Further, 

(v,c,d)
pFuel

denotes percent of the consumed fuel. The last 

probabilistic parameter which is considered in the 

modelling is the arrival and departure time of vehicles to 

home. According to [15], the arrival and departure time of 

vehicles are as Table I. 

In unmanaged charging modelling of EVs, it is assumed 

that vehicles are plugged-in immediately, when they arrive 

home, and are charged with constant 3 kW power [13]. As 

a result, vehicles are charged as much as possible 

depending on their battery capacities and arrival times to 

home.  Therefore, in order to obtain load profile of EV 

charging, load profile of every vehicle should be summed 

to each other. It must be noted that the influence disruptive 

shocks and external forces on the performance of the 

system is considerable, and recently using phasor 

measurement units (PMU), the disturbances in power 

networks (i. e., disruptive events) are reported[24]-[26]. 

 

E. Objective Function 

In order to manage charging of EVs in a smart way, their 

received power must be controlled in a smart way. From 

theoretical point of view, the best case happens when 

power is controlled instantaneously.  However, because of 

voluminous computer data it is assumed that control time 

interval is 15 min. For improving voltage profile and 

network power factor, the objective function is chosen 

such that the difference between square power factor and 

ideal power factor (equal to unity) is minimized. The 

objective function is expressed in Eq. (8). 

232 96 7

1 1 1

min (cos (d, t, i) 1)

i t d

z 

  

 
 (8) 

 

Some limits of the optimization as constraints, are 

represented by Eq. (9)-(12). Also slack and other 

substation active and reactive powers limitations should be 

considered. 

   
   

   

33
1

1 1

1

1 1

t

1000

cos , 1,2,...,96

slack
j j

j

j j

P t P
v t v t y

t t t  



  
  

      

  (9) 

Table I  Statistical data related to EVs. 

 

Departure Time (hour) Arrival Time (hour)  
weekend weekday weekend weekday Parameter 

9 7 15 18 Mean μ
T

(p)
  

6 3 6 3 Variance 

 

   
   

   

33
1

1 1

1

1 1

t

1000

sin , 1,2,...,96

slack
j j

j

j j

Q t Q
v t v t y

t t t  



  
  

      



 (10) 
 

   
   

   

33

1

t

1000

cos , 1,2,...,96, 2,...,33

i PHEV i
i j ij

j

i j ij

P t P
v t v t y

t t t i  



   
  

        



 (11) 
 

 
   

   

33

1

sin
1000

, 1,2,...,14400, 2,...,33

i
i j ij

j

i j ij

Q t
v t v t y

t t t i  




   

       


 (12) 

 

where, 
 iv t

, 
 i t

are the magnitude and phasor angle of 

voltage, respectively. 
 slackP t

and 
 slackQ t

are the active 

and reactive power of slack bus. Moreover, 
 iP t

and 

 iQ t
are thedemand active and reactive power of buses, 

respectively. In Eq. (11), PPHEV i
(t) is power demand of 

EVs.Eq. (13)-(16) are substation voltage magnitude and 

angle limits in slack and other substations. They are also 

considered as the other constraints. 

 1 1, 1,2,...,96v t t  
    (13) 

 1 1, 1,2,...,96t t   
    (14) 

 0.95 1.05, 1,2,...,96, 2,...,33iv t t i     
  (15) 

 3.14 3.14, 1,2,...,96, 2,...,33i t t i      
  (16) 

 

The next two equations are constraints that form EV 

managed charging curve and required grid energy. In (17),

iN
 is equal to the total vehicles on bus i, and is distributed 

on each bus with respect to annual peak load.  The next 

two equations are constraints which determine SOC of 

arrival and departure time. 

 
1

t (k, t),

2,...,33, 1,2,...,96

iN

PHEV i PHEV c

k

P P

i t





   



   (17) 
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 
(d 1)

(v,c,d)

(d)

, , 0.25, 1,2,...,96
T

T

D

PHEV cG

t A

E P v d t t





   
 (18) 

In (17), iN
 is equal to the total vehicles on bus i, and is 

distributed on each bus with respect to annual peak load.  

The next two equations are constraints which determine 

SOC of arrival and departure time. 
(c)(v,d)

(v,c,d)(v,c,d) (v,c,d)

(v,c)

(Tr E )d k
a pd

Bat

SOC SOC Fuel
C


  

 (19) 
(v,c,d)

(v,c,d 1) (v,c,d)

(v,c)

G
d a

Bat

E
SOC SOC

C

  

 (20) 

 

Finally, (21) and (22) specify limits of SOC of arrival and 

departure times, respectively. 
(v,c,d)0.1 0.8aSOC 

 (21) 
(v,c,d) 0.8dSOC 

 (22) 

 

III. TEST CASE AND SIMULATION RESULTS 

 

In this section, simulation results before and after charge 

management will be presented. At first, simulation results 

before smart charging has been presented. Next, 

simulation results after managed charging has been 

presented. The simulation results have been presented for 

a typical weekday in winter and with penetration factor of 

25%, 50%, 75%, and 100% in a typical bus. All 

simulations have been conducted via MATLAB software. 

The test network is a radial 33 substations IEEE test 

network with 12.66 kV nominal voltage [7]. Fig.1 shows 

the single line diagram of 33 substations distributed 

network. 

 

 
Fig. 1. Single line diagram of the 33-Substation distributed 

network 

 

F. Unmanaged EV Charging 

In unmanaged charging, as it described earlier, vehicles 

are plugged in just right after they come home. As a result, 

vehicles are charged to their maximum capacities. Fig. 2 

shows the outcomes resulting from unmanaged charging 

of EVs. 

 

 
Fig. 2. Load profile following unmanaged charging. 

 

As it can be seen from Fig. 2, EVs are charged 

approximately between 13 o’clock and 24 o’clock, and 

most of vehicles are charging about 18 o’clock. Therefore, 

there is a peak twice amount of normal peak at this period 

of time. 

 

Fig. 3 illustrates the voltage profile before the smart 

charging. As it can be observe from the Fig, between 13 

o’clock and 24 o’clock that PHEVs are plugged in, voltage 

drops from the normal situation, and the more penetration 

level increases, the more voltage drops. Also, it can be 

seen that voltage drops down to 0.968 pu In other hours of 

the day that no EVs are charged, the voltage profile has 

not changed. Moreover, as penetration level increases, the 

voltage profile lost its flatness. 

 

 
Fig 3. voltage profile in unmanaged charging. 

 

The next curve is power factor curve when EVs are 

charged in unmanaged method. This curve is depicted in 

Fig 4. As it can be perceived, at the beginning hours of the 

day, because the ratio of active power to reactive power 

has a low amount, the power factor drops to even 0.75. 

However, at the next hours, this amount reaches to above 

of 0.9, and in the period of hours that vehicles are charged, 

this amount increases, due to increase in the active power 

drawn from the network. 
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Fig 4. Power factor in unmanaged charging. 

 

G. EV Charging using the Proposed Method 

Fig. 5 illustrates voltage profile using the proposed EV 

charging method.  As it is noticed in this Fig, instead of 

being charged in peak load hours, using charge 

management model, vehicles charge interval is shifted to 

the lightly loaded hours.  

 

As it is obvious from the Fig. , in this case, load profiles 

are flatter than the previous case that demonstrates the 

effectiveness of smart charging. 

 

 
Fig 5. Load profile after smart charging. 

 

Voltage profile after smart charging is depicted in Fig. 6. 

This Fig shows that voltage profile is smoother than the 

previous case, and also in this case for penetration level of 

100%, voltage reaches to 0.976 pu which is better than the 

unmanaged case which was about 0.968 pu. As a result, in 

this case, not only voltage is smoother, but the voltage is 

also place in the upper range. The last curve is power 

factor after vehicles charged in a smart way. 

 

As it can be seen in Fig. 7 and in comparison to Fig 4, for 

different penetration levels, voltage becomes smoother, 

and in overall, for most of hours, power factor lays more 

than 0.9.  The main difference considered in these two 

Figs is in beginning hours of the day. With smart charging, 

most of vehicles instead of charging in peak hours are 

charged in lightly loaded hours and consequently, in these 

hours with increase in drawn active power from the 

network, power factor increases. 

 
Fig 6. Voltage profile using the proposed method. 

 

 
Fig 7. Power factor after smart charging. 

 

IV. CONCLUSION 

 

In this paper an objective function based on probabilistic 

model with taking account of fuel consumption has been 

developed to optimize the voltage profile and power factor 

in a distributed network. This paper employs a 

probabilistic model including parameters such as battery 

capacity, daily travelled distance and arrival time and 

departure time of EVs to and from home. The method has 

been applied to an IEEE test network. In order to control 

the received power by EVs and improve the voltage 

profile and power factor, an EV control canter in a smart 

grid has been utilized. The simulation results have 

validated the proposed model. 
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