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Abstract: Magnetic Levitation System (MLS) is an example of a non-linear and inherently unstable system. To 

overcome this instability an electromagnet will have to be constructed. The current in the electromagnetic coil is to be 

varied suitably using a compensator to generate varying magnetic field and hence a varying force to be exerted on any 

object in its vicinity. Two approaches were followed to design compensator. Firstly Root locus approach where in the 

pole in unstable region is moved to stable region. Another approach is Inward approach where in the poles are placed at 

desired location & co-efficient of compensator are obtained. 
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I. INTRODUCTION 

The physical system, as shown in Figure 1.1, consists of a 

steel ball that is to be levitated under an electromagnet. 

For the purpose of theoretical analysis and system 

behavioural study, the system parameters assumed 

suitably. And hysteresis effects of the electromagnet are 

assumed to be negligible. 
 

 
Where,         
m= Mass of the ball 
g = Gravitational force 
Fm=Force due to electromagnet 

x = Displacement of the ball 
L= Inductance of the coil 
i = Current through the coil 
 
The paper concentrates on the design of a controller for keeping 
a steel ball suspended in the air. In the ideal situation, the 
magnetic force produced by current from an electromagnet will 
counteract the weight of the steel ball. The main function of this 

controller is to maintain the balance between the magnetic force 
and the ball‟s weight. System linearization and compensation are 
employed to design the controller for this unstable nonlinear 
system. The controller designed in this project provides a robust 
closed-loop stabilization which can abide considerable range of 
disturbances on suspended mass. 
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The following parameters are used to obtain the complete 
transfer function of the system.  
 

 Resistance of coil  R 3Ω 

Inductance of coil  L 0.0425 H 

Constant    C 9.07×10-5 

I0 0.5 A 

Mass of ball   M 0.02312 kg 

x0 0.01m 

 

Substituting the above values in expression (1.1) we obtain the 
open loop transfer function of the system as, 
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(1.2) 

 
The open loop poles are at s1=-44.29, s2=44.29 and s3=-
70.588.The locus starts at poles and ends at zero.  
 

Since one of the pole lies in right half of„s‟ plane,  the system in 
unstable. The uncompensated root locus is shown in Fig (1.1).  
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Fig 1.1. Root locus of the uncompensated system 

II. COMPENSATOR USING ROOT LOCUS 

APPROACH 

The controller for magnetic levitation system is designed by Root 
locus method (RL Method) to provide maximum gain margin 
Gm, minimum damping oscillation and minimum settling time. 
Now Let us consider a magnetic levitation system with unity 
feedback and design a compensator based on root locus 
approach. The open-loop magnetic levitation system transfer 
function without pole cancellation is given by 
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A compensator, Gc(s), is used with a plant G(s) so that the 

overall loop gain can be set to satisfy desired time and frequency 
domain specifications and GC is used to adjust the system 
dynamics favorably without affecting the steady-state error. 
Consider the first-order compensator with the transfer function as 
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(2.1) 

 
The design problem is to select zero Z, pole P and gain K in 
order to provide a suitable performance. As mentioned earlier, by 
selecting the location of Z arbitrarily and then as a rule of thumb, 
the pole location is selected 10 times that of zero. And then  by 
trial and error method the value of K can found out. 

To provide some robustness in the system model, the controller 
is designed at zero equals -30 and pole is chosen to be an order 
10 away from the controller zero and hence is set to -300. The 
transfer function of the compensator becomes 
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(2.2) 

 
 The locations of the zeros and pole are selected so as to result in 

a satisfactory root locus for the compensated system. The closed 
loop transfer function of the given system along with 
compensator is given by expression (2.3). The root locus of the 
compensated system and step response of the same is show in 
Fig 2.1 and Fig 2.2 respectively. 
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Fig 2.1. Root locus of the compensated system (RL Method) 

 

 
Fig 2.2. Step Response of the compensated system (RL Method) 

 

From the Fig 2.1, root locus of the system is stabilized i.e. all the 

roots of the magnetic levitation system have moved to the left 
half of s-plain and the system achieves steady state quickly with 
least oscillations after using the compensator

 
With the compensator mentioned in (2.2).The system time 
domain specifications are, 

i. System gain = 3.991  
ii. settling time =0.175 seconds 

iii. Phase margin= 6.3145 
iv. Peak overshoot = 0.786% 

III. INWARD APPROACH 

 Another control system design approach is called Inward 
approach (Polynomial Approach). In this approach the reverse of 
the outward approach i.e. first a desired closed loop transfer 
function is designed, and then solve for required controller. This 

method is called a linear algebraic methodology for controller 
design 
 

In this approach we shall discuss the Diophantine equation. 
Consider the LTI system defined by transfer function 
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Assume that this transfer function system is completely state 
controllable and completely observable. That is there is no pole 

zero cancellation in transfer function, or D(s) and N(s) have no 
common factors. When polynomials D(s) and N(s) have no 
cancellation, these polynomials are called co-prime polynomials 

Then there exists an unique (n-1)th degree polynomial ( )s and 

( )s  such that  

( )cD s ( )D s + ( )cN s ( )N s =D0(s) 
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The Diophantine equation can be solved for Dc(s) and Nc(s) by 
use of following 2n×2n Sylvester Matrix E, which is defined in 
terms of the coefficient of co-prime polynomials D(s) and N(s) as 
follows [3]. The controller co-efficient matrix is given by 

                  X×Y=F 
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The co-efficient Dc0, Nc0, Dc1, Nc1.Can be determined by the 
following equation 

         
1Y X F 

 Where, 
         X = system Sylvester matrix  
         F = desired root location 

         Y = coefficients of Diophantine equation 
 
To achieve arbitrary pole-placement, the degree of controller 
(GC(s)) configuration must be m = n - 1 or higher [3]. If it is less 
than n-1, it may be possible to assign some of the poles but not 
all. The degree of the Inward Approach D0(s) of overall function 
G0(s) is n + m.
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Referring to unstable plant transfer function given by (1.2), the 
order of the plant transfer function is n=3, and it needs controller 
Gc(s) of the order m = n-1 = 2. This shows the degree of the 
characteristic equation D0(s) of the overall transfer function G0(s) 
is n + m = 5 
 
Then polynomial of the desired characteristic equation D0(s) is 

given by equation 
5

0( ) ( 100)D s s 

 The controller transfer function obtained by this approach is, 
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The closed loop transfer function of the system is given by 
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The root locus of the compensated system and step response of 
the same is show in Fig 3.1 and Fig 3.2 respectively. 

 
Fig 3.1. Root locus of the compensated system (Inward Method) 

 
Fig 3.2. Step Response of the compensated system (Inward 

Method) 
 

From the Fig3.1., root locus we can see that all the poles of the 
system are on left hand side of the „s‟ plane, showing the system 
is  stable. With the compensator mentioned in equation (3.3) .The 
system parameters are 

i. system gain = 2.8584 
ii. settling time = 0.0771seconds 

iii. Phase margin= 47.8662 
iv. Peak overshoot = 70.32% 

 

Using algebraic technique discussed above, the stability of the 
magnetic levitation system can be satisfactory achieved by 
selection of arbitrary stable poles of overall transfer function of 
the system. However, the performance specifications of the 

overall system are met. But this controller is unrealizable for 
practical implementation because the coefficients of the 
controller transfer functions are very large that may cause 
saturation of the components during practical implementation. 

IV. RESULTS AND COMPARISION 

For different locations of compensator‟s pole and zero the system 
performance parameters like gain margin (Gm), phase margin 
(Pm), settling time (ts) and peak overshoot (%Mp) will also get 
affected. The various system parameters are determined and the 
following results are observed 
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A. Root Locus method

 
As mentioned in section II the controller is designed for different 
Pole-zero location based on the root locus approach. And the 
comparative results are tabulated in Table 4.1. 

POLE ZERO Gm 
Pm 

(degree) 
ts(sec) 

%M
p 

-200 -20 0.532 -12.763 0.459 0 

-300 -30 1.367 6.3145 0.175 0.78 

-400 -40 1.841 9.0474 4.95 31.1 

-500 -50 1.644 4.3426 6.14 62.8 

Table 4.1 Results for different Pole-zero location  
(RL method) 

B. Inward Approach method 
As mentioned in section III the controller is designed for 
different desired pole location based on the inward approach. 
And the comparative results are tabulated in Table 4.2. 
 

DESIRED 
POLE 
POLYNOMIAL 

Gm 
Pm 

(degree) 
ts(sec) %Mp 

(s+200)5 3.2132 56.6904 0.0345 35.6% 

(s+100)5 2.8584 47.8662 0.0771 70.32% 

Table 4.2 Results for different Pole-zero location 
(RL method) 

Table 4.3 Results for different Pole-zero location (Inward 
                                 method) 
By observing the table 4. 1 for different location of poles and 
zeros  and variable system gain, we find that for pole  at-300 and 
zero at -30 the gain margin Gm=1.3674 and settling time 0.175 
seconds which is found very optimum from the table. 

A comparative study is also done for the different system gains 
when desired pole polynomial is (s+100)5 and are tabulated in 
Table 4.3. 
From Table 4.1,4.2,4.3the controller design using root locus is 
more effective as compared improved gain margin, better time 
response. 

V. CONCLUSION & FUTURE SCOPE 

Magnetic Levitation System (MLS) is inherently unstable 
because of system non linearity. So the system has been 
linearised and compensated with suitable compensators and then 

results are compared to find the best possible choice. The further 
scope would be to design the controller using advanced control 
technique such as adaptive control technique, fuzzy logic, sliding 
mode control etc. The system can be made more reliable, stable 
and precise using such advanced controllers 
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SYSTEM 
GAIN 

Gm 
Pm 

(degree) 
ts(sec) %Mp 

2.93 2.2213 18.1823 Infinite NaN 

2.95 2.1995 17.9217 10.8 0 

3.991 1.3674 6.3145 0.175 0.786 

9 0.0485 -22.9846 4.1 77.2 


